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I. INTRODUCTION
Bipartite networks

• Inbound (row) and outbound (column) nodes represent different types of
nodes, from sets U and V.

• Examples: ecological networks, recommendation systems, affiliation networks,
semantic graphs.

• Results can be generalized to other network types.

Interactions
• Interaction Xi = (X

(1)
i , X

(2)
i ) = network edge, given by a pair of node labels.

• Adjacency matrix defined by Yuv =
∑n

i=1 1{Xi = (u, v)}.

Community detection in networks
• Task: Group the row and column nodes in blocks {U1,U2, . . . } and {V1,V2, . . . }.
• Problem: Traditional approaches offer limited interpretability (spectral cluster-

ing) or unsuited to interaction sampling processes (stochastic block model).

Objective: Exploit generative network models that
• reproduce realistic network characteristics,
• support inference of latent block structures underlying interactions.

Our approach exploits the relationship between the representation of block
edge-exchangeable networks and exchangeable random partitions.

II. BLOCK EDGE-EXCHANGEABLE NETWORKS
Given a partition of the node labels, the network is block edge-exchangeable [2] if

(Xσ,Zσ)
D
= (X,Z), for all permutation σ,

where Zi = (Z
(1)
i , Z

(2)
i ) are the block assignments of Xi = (X

(1)
i , X

(2)
i ).

Representation theorem
There exist distributions H on N2, and (Pkℓ)k,ℓ on Uk × Vℓ, such that

Zi | H ∼ H,

Xi | Zi = (k, ℓ), Pkℓ ∼ Pkℓ, for all (k, ℓ).

III. EXCHANGEABLE RANDOM PARTITIONS
The discrete measures H and Pkℓ induce (bivariate) marginally exchangeable ran-
dom partition processes. Marginal exchangeability ensures that row and column
clusters can be interpreted separately while retaining joint dependencies.

Example: Clustering with Independence Centring (CLIC) process [1]
F | π,G(1), G(2) ∼ DP(π,G(1) ×G(2)),

G(j) | α(j), H(j) ∼ DP(α(j), H(j)) for j ∈ {1, 2},
yielding a bivariate partition (C(1),C(2)) ∼ CLIC(π, α(1), α(2)) that is marginally ex-
changeable.

IV. NESTED CLIC MODEL

The joint partition (Z,X) is described by
• Z ∼ CLIC(π, α(1), α(2)),
• X is the partition induced by X̃, with

X̃i | Zi = (k, ℓ), Pkℓ ∼ Pkℓ, Pkℓ | Q(1)
k , Q

(2)
ℓ ∼ DP(ρkℓ, Q

(1)
k ×Q

(2)
ℓ ),

Q
(j)
k | Q(j)

0 ∼ DP(β(j)
k , Q

(j)
0 ), for k ∈ N, j ∈ {1, 2}.

Properties
• Nested structure: There is a partition process for the blocks, and within each

block, a partition process for the species.
• Atom sharing between blocks: Blocks in the same row share the same row

species; blocks in the same column share the same column species.
• Multiview dependency: For both blocks and species, row and column selec-

tions are dependent.

V. RESTAURANT METAPHOR
To build intuition, we illustrate the generative model through a metaphor involving
restaurants and tables.

• Consider restaurants located on a 2D grid. These restaurants have tables, char-
acterized by their shape and color, where clients can sit.

• The latent partition Z of the individuals is induced by the restaurant coordi-
nates in which they sit.

• The observed partition X of the individuals is induced by the shapes and
colors of the tables at which they sit (regardless of the restaurant).
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Process
• Clients are assigned a restaurant according to CLIC(π, α(1), α(2)),
• In each restaurant (k, ℓ), clients are assigned a table, according to CRP(ρkℓ),
• Tables are assigned a shape and a color: restaurants on the same row share

table shapes, restaurants on the same column share table colors.
1. Shape: tables in restaurants on row k assigned according to CRP(β(1)

k ).
2. Color: tables in restaurants on column ℓ assigned according to CRP(β(2)

ℓ ).

VI. NETWORK PROPERTIES
Real-life networks often exhibit

• sparsity,
• power-law degree distributions,
• nestedness,
• modularity.

Simulations
Two networks with ρkℓ = 100, β

(1)
k = β

(2)
ℓ = 5, and:

1. π = 100, α(1) = α(2) = 0.8,
2. π = 1, α(1) = α(2) = 8.

Nested Modular

Y : counts of X Z: block assignments Y reordered by Z

▶ Our model is flexible enough to depict classic network structures.

VII. INFERENCE
We aim to compute the posterior distribution for the block assignments Z and the
parameters π, ρ, β(1) and β(2).
Partition probability
For a more general model, replacing the distributions DP(γ) by (proper) species
sampling models SSM(γ) with EPPF ϕn

k (n1, . . . , nk; γ).

P (X | Z) =
∑
r

K∏
k=1

ϕ
|r(k)

1 |
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∏
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{ ∑
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1

ruv!

(
nuv

wuv,1, . . . , wuv,ruv

)
× ϕn(kℓ)

|r(kℓ)|

(
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)}
,

where r
(k)
1 : = (ru·:u ∈ Uk), r

(ℓ)
2 : = (r·v: v ∈ Vℓ), w(kℓ) = (wuv,t: t ∈ [ruv], (u, v) ∈

Uk × Vℓ).

Metaphor interpretation
• First term handles shape counts, second handles color counts, third handles

seating arrangements within restaurants,
• ruv is the number of tables with shape u and color v,
• wuv,t is the number of clients sitting at the t-th table with shape u and color v.

▶ We perform inference using a Gibbs sampler with finite approximations and
HDP data augmentation techniques.

VIII. FUTURE WORK
• Investigate consistency of the inferred block structure.
• Clarify the identifiability and interpretation of the inferred parameters.
• Extend the framework to hypergraphs via exchangeable feature allocation pro-

cesses (e.g., IBP-based priors).
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