

Node Clustering in Edge-Exchangeable Networks based on Exchangeable Partition Processes

b 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 d 1 2 3 4 5 6 7 8 9

Tâm Le Minh¹, Louise Alamichel²

¹Univ. Grenoble Alpes, Inria, France ²Bocconi University, Italy

I. INTRODUCTION

Bipartite networks

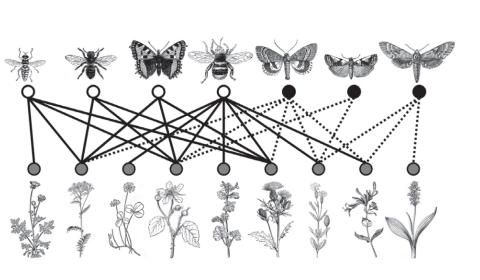
- Inbound (row) and outbound (column) nodes represent different types of nodes, from sets \mathcal{U} and \mathcal{V} .
- Examples: ecological networks, recommendation systems, affiliation networks, semantic graphs.
- Results can be generalized to other network types.

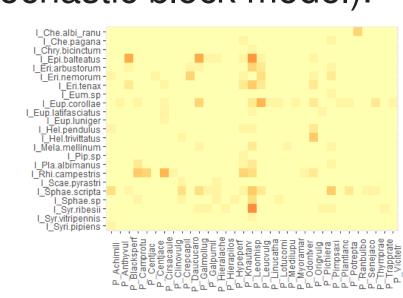
Interactions

- Interaction $X_i = (X_i^{(1)}, X_i^{(2)})$ = network edge, given by a pair of node labels.
- Adjacency matrix defined by $Y_{uv} = \sum_{i=1}^{n} \mathbb{1}\{X_i = (u, v)\}.$

Community detection in networks

- Task: Group the row and column nodes in blocks $\{U_1, U_2, \dots\}$ and $\{V_1, V_2, \dots\}$.
- Problem: Traditional approaches offer limited interpretability (spectral clustering) or unsuited to interaction sampling processes (stochastic block model).





Objective: Exploit generative network models that

- reproduce realistic network characteristics,
- support inference of latent block structures underlying interactions.

Our approach exploits the relationship between the representation of block edge-exchangeable networks and exchangeable random partitions.

II. BLOCK EDGE-EXCHANGEABLE NETWORKS

Given a partition of the node labels, the network is block edge-exchangeable [2] if

$$(\boldsymbol{X}^{\sigma}, \boldsymbol{Z}^{\sigma}) \stackrel{\mathcal{D}}{=} (\boldsymbol{X}, \boldsymbol{Z}), \text{ for all permutation } \sigma,$$

where $Z_i = (Z_i^{(1)}, Z_i^{(2)})$ are the block assignments of $X_i = (X_i^{(1)}, X_i^{(2)})$.

Representation theorem

There exist distributions H on \mathbb{N}^2 , and $(P_{k\ell})_{k,\ell}$ on $\mathcal{U}_k \times \mathcal{V}_\ell$, such that

$$Z_i \mid H \sim H$$
,

 $X_i \mid Z_i = (k, \ell), P_{k\ell} \sim P_{k\ell}, \text{ for all } (k, \ell).$

III. EXCHANGEABLE RANDOM PARTITIONS

The discrete measures H and $P_{k\ell}$ induce (bivariate) marginally exchangeable random partition processes. Marginal exchangeability ensures that row and column clusters can be interpreted separately while retaining joint dependencies.

Example: Clustering with Independence Centring (CLIC) process [1]

$$F \mid \pi, G^{(1)}, G^{(2)} \sim \mathsf{DP}(\pi, G^{(1)} \times G^{(2)}),$$

$$G^{(j)} \mid \alpha^{(j)}, H^{(j)} \sim \mathsf{DP}(\alpha^{(j)}, H^{(j)}) \text{ for } j \in \{1, 2\},$$

yielding a bivariate partition $(C^{(1)},C^{(2)})\sim {\rm CLIC}(\pi,\alpha^{(1)},\alpha^{(2)})$ that is marginally exchangeable.

REFERENCES

- [1] A. Dombowsky and D. B. Dunson. Product centred Dirichlet processes for Bayesian multiview clustering. *JRSSB*, 2025.
- [2] Y. Zhang and W. Dempsey. Node-level community detection within edge exchangeable models for interaction processes. *JASA*, 2024.

IV. NESTED CLIC MODEL

The joint partition (Z, X) is described by

- $Z \sim \mathsf{CLIC}(\pi, \alpha^{(1)}, \alpha^{(2)}),$
- $oldsymbol{X}$ is the partition induced by $ilde{oldsymbol{X}}$, with

$$\begin{split} \tilde{X}_i \mid Z_i &= (k,\ell), P_{k\ell} \sim P_{k\ell}, & P_{k\ell} \mid Q_k^{(1)}, Q_\ell^{(2)} \sim \mathsf{DP}(\rho_{k\ell}, Q_k^{(1)} \times Q_\ell^{(2)}), \\ Q_k^{(j)} \mid Q_0^{(j)} \sim \mathsf{DP}(\beta_k^{(j)}, Q_0^{(j)}), & \text{for } k \in \mathbb{N}, j \in \{1, 2\}. \end{split}$$

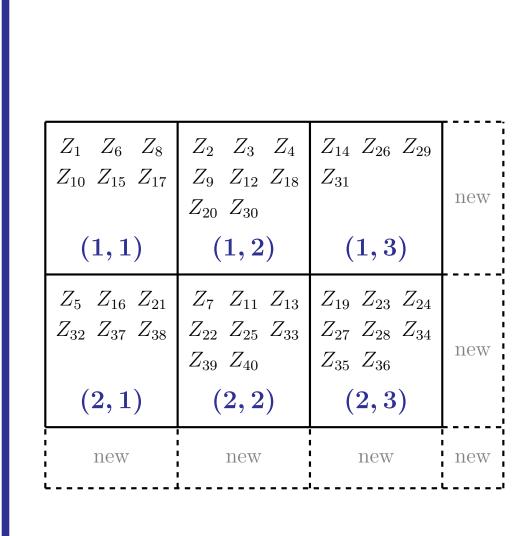
Properties

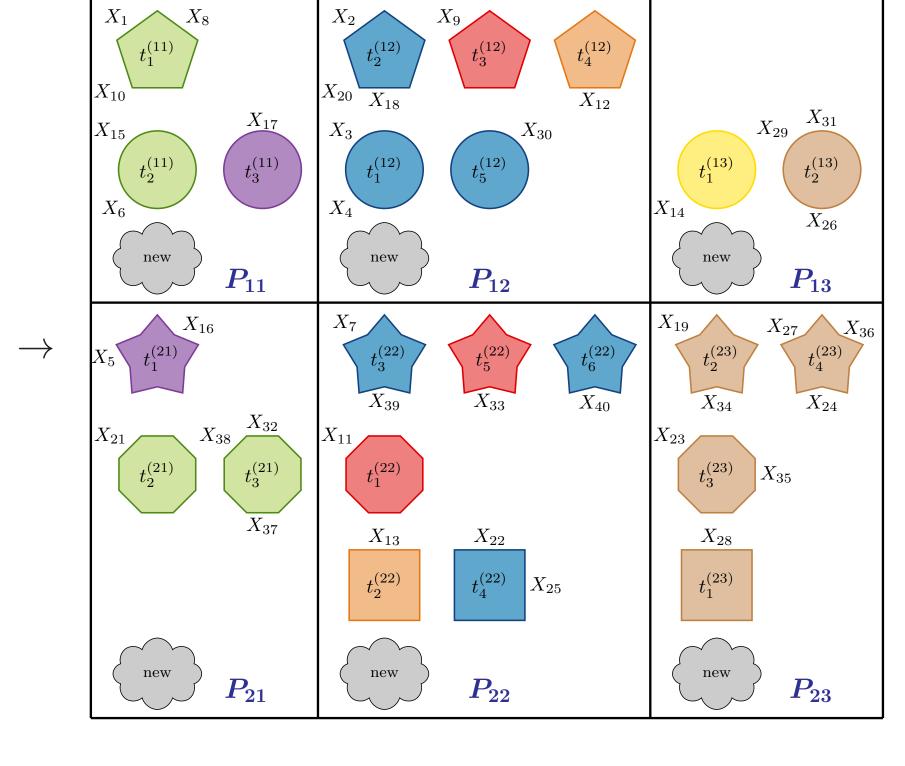
- Nested structure: There is a partition process for the blocks, and within each block, a partition process for the species.
- Atom sharing between blocks: Blocks in the same row share the same row species; blocks in the same column share the same column species.
- Multiview dependency: For both blocks and species, row and column selections are dependent.

V. RESTAURANT METAPHOR

To build intuition, we illustrate the generative model through a metaphor involving restaurants and tables.

- Consider restaurants located on a 2D grid. These restaurants have tables, characterized by their shape and color, where clients can sit.
- The latent partition Z of the individuals is induced by the restaurant coordinates in which they sit.
- The observed partition X of the individuals is induced by the shapes and colors of the tables at which they sit (regardless of the restaurant).





Process

- Clients are assigned a restaurant according to $CLIC(\pi, \alpha^{(1)}, \alpha^{(2)})$,
- In each restaurant (k,ℓ) , clients are assigned a table, according to $\mathbf{CRP}(\rho_{k\ell})$,
- Tables are assigned a shape and a color: restaurants on the same row share table shapes, restaurants on the same column share table colors.
 - 1. Shape: tables in restaurants on row k assigned according to $CRP(\beta_k^{(1)})$.
- 2. Color: tables in restaurants on column ℓ assigned according to $\mathbf{CRP}(\beta_{\ell}^{(2)})$

VIII. FUTURE WORK

- Investigate consistency of the inferred block structure.
- Clarify the identifiability and interpretation of the inferred parameters.
- Extend the framework to **hypergraphs** via exchangeable **feature allocation** processes (e.g., IBP-based priors).

VI. NETWORK PROPERTIES

Real-life networks often exhibit

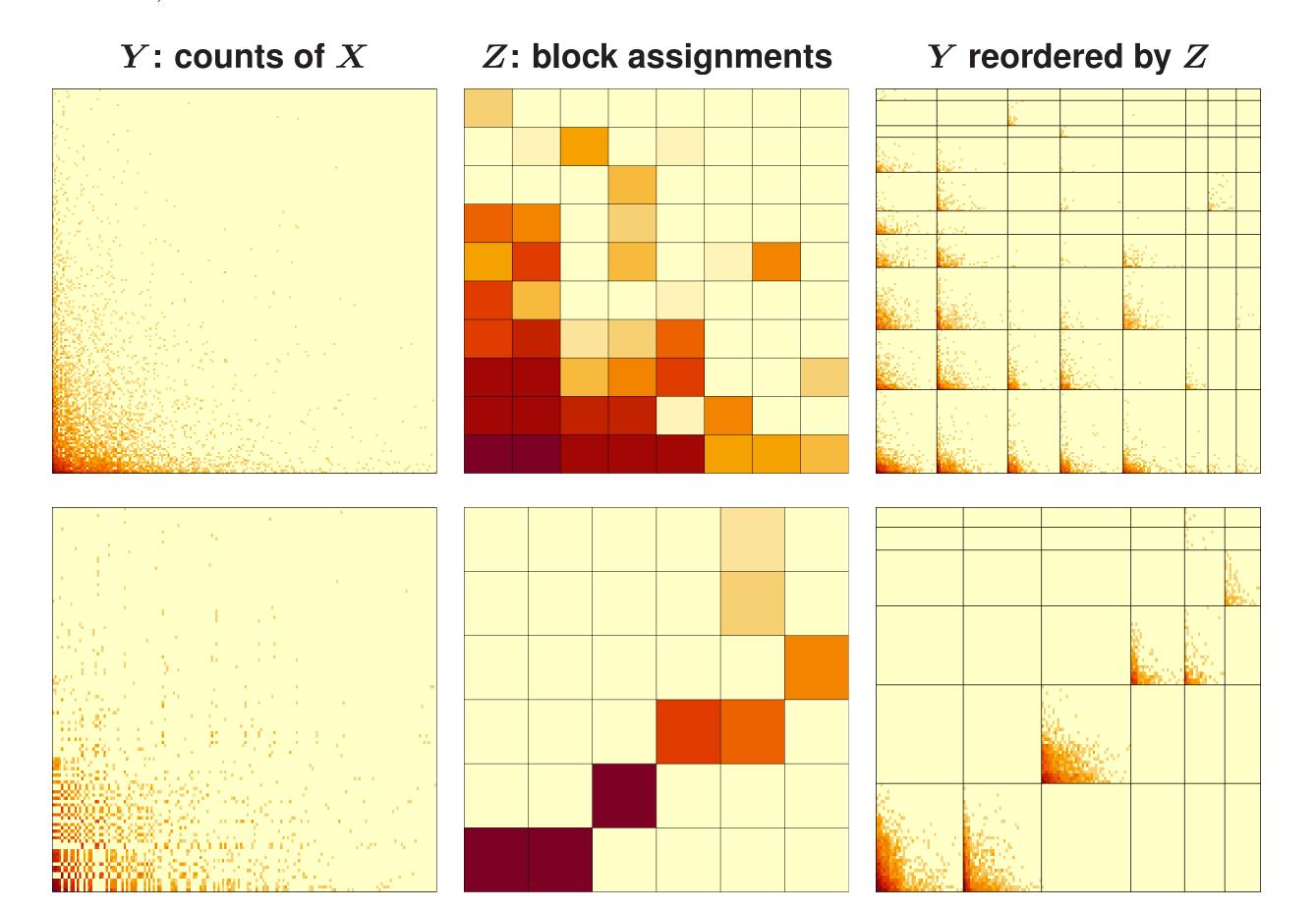
- sparsity,
- power-law degree distributions,
- nestedness,
- modularity.

Simulations

Two networks with $\rho_{k\ell} = 100, \beta_k^{(1)} = \beta_\ell^{(2)} = 5$, and:

1.
$$\pi = 100, \alpha^{(1)} = \alpha^{(2)} = 0.8,$$

2.
$$\pi = 1, \alpha^{(1)} = \alpha^{(2)} = 8.$$



➤ Our model is flexible enough to depict classic network structures.

VII. INFERENCE

We aim to compute the posterior distribution for the block assignments Z and the parameters π , ρ , $\beta^{(1)}$ and $\beta^{(2)}$.

Partition probability

For a more general model, replacing the distributions $\mathsf{DP}(\gamma)$ by (proper) species sampling models $\mathsf{SSM}(\gamma)$ with $\mathsf{EPPF}\ \phi_k^n(n_1,\ldots,n_k;\gamma)$.

$$P(\boldsymbol{X} \mid \boldsymbol{Z}) = \sum_{\boldsymbol{r}} \prod_{k=1}^{K} \phi_{|\mathcal{U}_{k}|}^{|\boldsymbol{r}_{1}^{(k)}|} \left(\boldsymbol{r}_{1}^{(k)}; \beta_{k}^{(1)}\right) \prod_{\ell=1}^{L} \phi_{|\mathcal{V}_{\ell}|}^{|\boldsymbol{r}_{2}^{(\ell)}|} \left(\boldsymbol{r}_{2}^{(\ell)}; \beta_{\ell}^{(2)}\right)$$

$$\times \prod_{(k,\ell)} \left\{ \sum_{\boldsymbol{w}^{(k\ell)}} \prod_{(u,v) \in \mathcal{U}_{k} \times \mathcal{V}_{\ell}} \frac{1}{r_{uv}!} \binom{n_{uv}}{w_{uv,1}, \dots, w^{uv,r_{uv}}} \times \phi_{|\boldsymbol{r}^{(k\ell)}|}^{n_{(k\ell)}} \left(\boldsymbol{w}^{(k\ell)}; \rho_{k\ell}\right) \right\},$$

where $r_1^{(k)} := (r_u : u \in \mathcal{U}_k)$, $r_2^{(\ell)} := (r_v : v \in \mathcal{V}_\ell)$, $w^{(k\ell)} = (w_{uv,t} : t \in [r_{uv}], (u,v) \in \mathcal{U}_k \times \mathcal{V}_\ell)$.

Metaphor interpretation

- First term handles shape counts, second handles color counts, third handles seating arrangements within restaurants,
- r_{uv} is the number of tables with shape u and color v,
- $w_{uv,t}$ is the number of clients sitting at the t-th table with shape u and color v.
- ► We perform inference using a Gibbs sampler with finite approximations and HDP data augmentation techniques.