Multimodal optimization: a variational approach

Tâm Le Minh¹, Jacopo Iollo¹, Julyan Arbel¹, Thomas Möllenhoff², Mohammad Emtiyaz Khan², Florence Forbes¹

¹Univ. Grenoble Alpes, Inria, France ²RIKEN-AIP, Japan

w = 1e - 04

PROBLEM STATEMENT

Fitness function

• $\ell: \mathbb{R}^d \to \mathbb{R} \rightsquigarrow \text{ can be non-convex and multimodal.}$

Goals

- locate multiple local and global maxima in one run,
- identify the "widest" maxima.

Approach

Our optimization algorithm is inspired by the **Bayesian learning rule** [2], using:

- a variational formulation of the problem and a relevant variational family,
- a procedure based on natural gradients.

In addition, we use an **annealed objective function**.

SIMULATIONS

w = 0.01

Example 1: Gaussian mixture with 3 components, 3 global + 1 local modes

Effect of the entropy penalty: approached solutions $q_{\Lambda^{*,\omega}}$ for a fixed $\omega > 0, K = 3$

ANNEALED VARIATIONAL OBJECTIVE

Variational formulation

$$q^* = \underset{q \in \mathcal{P}(\mathbb{R}^d)}{\operatorname{arg max}} \mathbb{E}_q[\ell(\boldsymbol{\xi})].$$

The solutions are of the form $q^* = \sum_{i=1}^{L} c_i \delta_{\boldsymbol{\xi}_i^*}$, where
• $(\boldsymbol{\xi}_i^*)_{1 \leq i \leq L}$ are the global maxima of ℓ ,
• $(c_i)_{1 \leq i \leq L}$ are weights in [0, 1] such that $\sum_{\ell=1}^{L} c_i = 1$.

Entropy penalty

$$q^{*,\omega} = \underset{q \in \mathcal{P}(\mathbb{R}^d)}{\arg \max} \mathbb{E}_q[\underbrace{\ell(\boldsymbol{\xi}) - \omega \log q(\boldsymbol{\xi})}_{f_{\omega}(\boldsymbol{\xi})}], \text{ where } \omega > 0.$$

Convergence result

$$q^{*,\omega} \stackrel{\sim}{\underset{\omega \to 0}{\longrightarrow}} q^* = \sum_{i=1}^{L} c_i^* \delta_{\boldsymbol{\xi}_i^*},$$

where for all $1 \le i \le L, c_i^* \propto \det(-\nabla^2 \ell(\boldsymbol{\xi}_i^*))^{-1/2}.$
Annealing schedule
For optimization, set $(\omega_t)_{t\ge 1}$ with $\omega_t \xrightarrow[t\to 0]{} 0.$

VARIATIONAL FAMILY: GAUSSIAN MIXTURES

Search restriction to Gaussian mixtures with K components

$$q_{\mathbf{\Lambda}}(\boldsymbol{\xi}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{m}_k, \boldsymbol{S}_k^{-1}).$$

Parameterization

 $\boldsymbol{\Lambda} = (\log(\pi_1/\pi_K), \ldots, \log(\pi_{K-1}/\pi_K), \boldsymbol{\lambda}_1, \ldots, \boldsymbol{\lambda}_K), \text{ where } \boldsymbol{\lambda}_k = (\boldsymbol{S}_k \boldsymbol{m}_k, -\boldsymbol{S}_k/2).$

Targeted result

- the means $(\boldsymbol{m}_k)_{1 \leq k \leq K}$ converge to different modes of ℓ ,
- the covariance matrices $(S_k^{-1})_{1 \le k \le K}$ shrink to 0,
- the weights $(\pi_k)_{1 \le k \le K}$ give information on the curvature at the modes.

Effect of entropy penalty

 $\omega > 0$ induces an (intra- and) inter-component repulsion term.

OPTIMIZATION: NATURAL GRADIENT ASCENT

Natural gradient ascent: update rule

$$\Lambda_{t+1} = \Lambda_t + \rho_t F(\Lambda_t)^{-1} \nabla_{\Lambda} \underbrace{\mathbb{E}_{q_{\Lambda_t}}[f_{\omega_t}(\boldsymbol{\xi}; \Lambda_t)]}_{\mathcal{L}_{\omega_t}(\boldsymbol{\Lambda}_t)}.$$

- $F(\Lambda_t)$ is the Fisher information matrix.
- The natural gradient gives the steepest direction in the Riemannian manifold (parameter space) [1].
- Convergence is quick, but computation of $F(\Lambda_t)^{-1}$ is usually involving.

Case of Gaussian mixtures [4]

► The optimization problem is non-convex, therefore **local modes can be** found.

Example 3: Gaussian mixture with 3 components, 2 global + 1 local modes

Paths of the means $(m_k)_{1 \le k \le K}$ under annealing schedule $\omega_t = \omega_0/t$

► The weights are proportional to the determinant of the Hessian matrix of ℓ at the "highest" modes found.

$$S_{k,t+1} = S_{k,t} - \frac{2\rho_t}{\pi_{k,t}} \nabla_{S_k^{-1}} \mathcal{L}_{\omega_t}(\boldsymbol{\Lambda}_t),$$

$$\boldsymbol{m}_{k,t+1} = \boldsymbol{m}_{k,t} + \frac{\rho_t}{\pi_{k,t}} S_{k,t+1}^{-1} \nabla_{\boldsymbol{m}_k} \mathcal{L}_{\omega_t}(\boldsymbol{\Lambda}_t),$$

$$\log(\pi_{k,t+1}/\pi_{K,t+1}) = \log(\pi_{k,t}/\pi_{K,t}) + \rho_t \nabla_{\pi_k} \mathcal{L}_{\omega_t}(\boldsymbol{\Lambda}_t).$$

Weight gradient

$$\nabla_{\pi_k} \mathcal{L}_{\omega}(\boldsymbol{\Lambda}) = \mathbb{E}_{\mathcal{N}(\boldsymbol{m}_k, \boldsymbol{S}_k^{-1})}[f_{\omega}(\boldsymbol{\xi}; \boldsymbol{\Lambda})] - \mathbb{E}_{\mathcal{N}(\boldsymbol{m}_K, \boldsymbol{S}_K^{-1})}[f_{\omega}(\boldsymbol{\xi}; \boldsymbol{\Lambda})].$$

Black-box method

$$\nabla_{\boldsymbol{m}_{k}} \mathcal{L}_{\omega}(\boldsymbol{\Lambda}) = \pi_{k} \mathbb{E}_{\mathcal{N}(\boldsymbol{m}_{k},\boldsymbol{S}_{k}^{-1})} [\boldsymbol{S}_{k}(\boldsymbol{\xi}-\boldsymbol{m}_{k})f_{\omega}(\boldsymbol{\xi};\boldsymbol{\Lambda})],$$

$$\nabla_{\boldsymbol{S}_{k}^{-1}} \mathcal{L}_{\omega}(\boldsymbol{\Lambda}) = \frac{\pi_{k}}{2} \mathbb{E}_{\mathcal{N}(\boldsymbol{m}_{k},\boldsymbol{S}_{k}^{-1})} [(\boldsymbol{S}_{k}(\boldsymbol{\xi}-\boldsymbol{m}_{k})(\boldsymbol{\xi}-\boldsymbol{m}_{k})^{T}\boldsymbol{S}_{k}-\boldsymbol{S}_{k})f_{\omega}(\boldsymbol{\xi};\boldsymbol{\Lambda})].$$

Bonnet and Price's theorems

$$\nabla_{\boldsymbol{m}_{k}} \mathcal{L}_{\omega}(\boldsymbol{\Lambda}) = \pi_{k} \mathbb{E}_{\mathcal{N}(\boldsymbol{m}_{k},\boldsymbol{S}_{k}^{-1})} [\nabla_{\boldsymbol{\xi}} f_{\omega}(\boldsymbol{\xi};\boldsymbol{\Lambda})],$$
$$\nabla_{\boldsymbol{S}_{k}^{-1}} \mathcal{L}_{\omega}(\boldsymbol{\Lambda}) = \frac{\pi_{k}}{2} \mathbb{E}_{\mathcal{N}(\boldsymbol{m}_{k},\boldsymbol{S}_{k}^{-1})} [\nabla_{\boldsymbol{\xi}}^{2} f_{\omega}(\boldsymbol{\xi};\boldsymbol{\Lambda})].$$

FUTURE WORK

- Elements from **evolutionary algorithms** [5] can be incorporated to find the global maxima more easily.
 - \sim However, this means local maxima are less likely to be detected.
- Application to posterior mode identification in **Bayesian inverse problems** [3].
- [1] S.-I. Amari. Natural gradient works efficiently in learning. Neur. Comp., 1998. [2] M. E. Khan and H. Rue. The Bayesian learning rule. JMLR, 2023. [3] T. Le Minh, J. Arbel, T. Möllenhoff, M. E. Khan, and F. Forbes. Natural variational annealing for multimodal optimization. In preparation. [4] W. Lin, M. E. Khan, and M. Schmidt. Fast and simple natural-gradient variational inference with mixture of exponential-family approximations. In ICML, 2019. [5] Y. Ollivier, L. Arnold, A. Auger, and N. Hansen. Information-geometric optimization algorithms: A unifying picture via invariance principles. JMLR, 2017.