Multimodal optimization: a variational approach 6,2 2 :'2

Tam Le Minh!, Jacopo Iollo!, Julyan Arbel!, Thomas Mollenhoff?,

Mohammad Emtiyaz Khan?, Florence Forbes' p Mp
@

1'Univ. Grenoble Alpes, Inria, France “‘RIKEN-AIP, Japan SIKEN

PROBLEM STATEMENT SIMULATIONS

Fitness function Example 1: Gaussian mixture with 3 components, 3 global + 1 local modes
o /:RY - R ~» can be non-convex and multimodal.

Goals

e locate multiple local and global maxima in one run, w = 0.01 w = 1e-04
e identity the "widest" maxima.

Effect of the entropy penalty: approached solutions gp+.« for a fixed w > 0, K =3

Approach

Our optimization algorithm is inspired by the Bayesian learning rule |2|, using: -
e a variational formulation of the problem and a relevant variational family,
e a procedure based on natural gradients. o

In addition, we use an annealed objective function.

ANNEALED VARIATIONAL OBJECTIVE N

Variational formulation

q¢" = argmax[E,[¢(§)].
qeP(R)

The solutions are of the form ¢* = Z,L.Lzl c;0g=, Where N
® (£')1<i<r are the global maxima of /,

® (ci)1<i<r are weights in [0, 1] such that 2521 c; = 1.

Entropy penalty o
¢~ = argmaxE,[¢{(§) —wlogq(&)], where w > 0.
qgeEP(R) <
fu(€)
Convergence result ~ N
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w 1 Examples of annealing schedules » The entropy term helps to prevent the means from converging to
where for all 1 <i < L, ¢ oc det(—V2(&5))~1/2, o “ $ similar modes.
;E \ \—L _ Example 2: Rastrigin function

Annealing schedule

60 80

Lo . t Paths of the means (m under annealing schedule w; = wq /t1°
For optimization, set (w¢)s>1 with wy — 0. 4 (M )1<k<k S t 0/
— —

VARIATIONAL FAMILY: (GAUSSIAN MIXTURES

Search restriction to (Gaussian mixtures with X components -

K
aa(€) = mN(my, ;).
=1

Parameterization
A = (log(mi/7K), ..., log(Tk_1/TK), A1,..., Ak ), Wwhere A = (Spmy, —Si/2). T
Targeted result

e the means (myg)i<x<x converge to different modes of ¢, » The optimization problem is non-convex, therefore local modes can be
e the covariance matrices (S, 1)1§ k<x shrink to 0, found.

o the weights (7 )1<rx<xk give information on the curvature at the modes.

Example 3: (Gaussian mixture with 3 components, 2 global + 1 local modes
Effect of entropy penalty

w > 0 induces an (intra- and) inter-component repulsion term. Paths of the means (my)1<k<x under annealing schedule w; = wo/t

K=3 Mixture weights for K = 3

OPTIMIZATION: NATURAL GRADIENT ASCENT N

Natural gradient ascent: update rule

Atpr = Ap + prF(A) T VAR, [fo, (& AL)].

A ¥ — o
‘th (At)
e F(A,) is the Fisher information matrix. T
e The natural gradient gives the steepest direction in the Riemannian manifold
(parameter space) |1]. | . . |
e Convergence is quick, but computation of F'(A;)~! is usually involving. 100 200 300 400 500

Case of Gaussian mixtures |[4]

2
Skt = Skt — Vg1 Ly, (Ar),
Tkt &
_ Pt g-1 9)
M 41 = Mg ¢ - tSk,t—l—lvmk‘th (Ay), UTURE WORK
log(Tht41/Tk441) = 108(Th /T 1) + PtV Lo, (As). o Klements fI:om evolutio.nary algorithms 5| can be incorporated to find the
Weicht dient global maxima more easily.
CIEHL gradien ~~ However, this means local maxima are less likely to be detected.
Vi Lu(A) = IE':'u\f(mk,sk—l) (& A)] - EN(mK,S;) fu(&A)]. e Application to posterior mode identification in Bayesian inverse problems
Black-box method 3]
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