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Problem statement
Fitness function

• ℓ:Rd −→ R ⇝ can be non-convex and multimodal.
Goals

• locate multiple local and global maxima in one run,
• identify the "widest" maxima.

Approach
Our optimization algorithm is inspired by the Bayesian learning rule [2], using:

• a variational formulation of the problem and a relevant variational family,
• a procedure based on natural gradients.

In addition, we use an annealed objective function.

Annealed variational objective
Variational formulation

q∗ = argmax
q∈P(Rd)

Eq[ℓ(ξ)].

The solutions are of the form q∗ =
∑L

i=1 ciδξ∗
i
, where

• (ξ∗i )1≤i≤L are the global maxima of ℓ,
• (ci)1≤i≤L are weights in [0, 1] such that

∑L
ℓ=1 ci = 1.

Entropy penalty
q∗,ω = argmax

q∈P(Rd)

Eq[ℓ(ξ)− ω log q(ξ)︸ ︷︷ ︸
fω(ξ)

], where ω > 0.

Convergence result

q∗,ω ⇀
ω→0

q∗ =
L∑

i=1

c∗i δξ∗
i
,

where for all 1 ≤ i ≤ L, c∗i ∝ det(−∇2ℓ(ξ∗i ))
−1/2.

Annealing schedule

For optimization, set (ωt)t≥1 with ωt −−−→
t→0
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Examples of annealing schedules
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Variational family: Gaussian mixtures
Search restriction to Gaussian mixtures with K components

qΛ(ξ) =
K∑

k=1

πkN (mk,S
−1
k ).

Parameterization
Λ = (log(π1/πK), . . . , log(πK−1/πK),λ1, . . . ,λK) , where λk = (Skmk,−Sk/2).

Targeted result
• the means (mk)1≤k≤K converge to different modes of ℓ,
• the covariance matrices (S−1

k )1≤k≤K shrink to 0,
• the weights (πk)1≤k≤K give information on the curvature at the modes.

Effect of entropy penalty
ω > 0 induces an (intra- and) inter-component repulsion term.

Optimization: Natural gradient ascent
Natural gradient ascent: update rule

Λt+1 = Λt + ρtF (Λt)
−1∇Λ EqΛt

[fωt
(ξ;Λt)]︸ ︷︷ ︸

Lωt
(Λt)

.

• F (Λt) is the Fisher information matrix.
• The natural gradient gives the steepest direction in the Riemannian manifold

(parameter space) [1].
• Convergence is quick, but computation of F (Λt)

−1 is usually involving.

Case of Gaussian mixtures [4]

Sk,t+1 = Sk,t −
2ρt
πk,t

∇S−1
k

Lωt
(Λt),

mk,t+1 = mk,t +
ρt
πk,t

S−1
k,t+1∇mk

Lωt
(Λt),

log(πk,t+1/πK,t+1) = log(πk,t/πK,t) + ρt∇πk
Lωt

(Λt).

Weight gradient
∇πk

Lω(Λ) = EN (mk,S
−1
k )[fω(ξ;Λ)]− EN (mK ,S−1

K )[fω(ξ;Λ)].

Black-box method
∇mk

Lω(Λ) = πkEN (mk,S
−1
k )[Sk(ξ −mk)fω(ξ;Λ)],

∇S−1
k

Lω(Λ) =
πk

2
EN (mk,S

−1
k )[(Sk(ξ −mk)(ξ −mk)

TSk − Sk)fω(ξ;Λ)].

Bonnet and Price’s theorems
∇mk

Lω(Λ) = πkEN (mk,S
−1
k )[∇ξfω(ξ;Λ)],

∇S−1
k

Lω(Λ) =
πk

2
EN (mk,S

−1
k )[∇

2
ξfω(ξ;Λ)].

Simulations
Example 1: Gaussian mixture with 3 components, 3 global + 1 local modes

Effect of the entropy penalty: approached solutions qΛ∗,ω for a fixed ω > 0, K = 3
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▶ The entropy term helps to prevent the means from converging to
similar modes.

Example 2: Rastrigin function

Paths of the means (mk)1≤k≤K under annealing schedule ωt = ω0/t
1.5
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▶ The optimization problem is non-convex, therefore local modes can be
found.

Example 3: Gaussian mixture with 3 components, 2 global + 1 local modes

Paths of the means (mk)1≤k≤K under annealing schedule ωt = ω0/t
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Mixture weights for K = 3
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▶ The weights are proportional to the determinant of the Hessian
matrix of ℓ at the "highest" modes found.

Future work
• Elements from evolutionary algorithms [5] can be incorporated to find the

global maxima more easily.
⇝ However, this means local maxima are less likely to be detected.

• Application to posterior mode identification in Bayesian inverse problems
[3].
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