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Résumé : Le travail présenté dans cette thèse
est essentiellement théorique, mais motivé par
des applications écologiques. Les réseaux d’interac-
tions écologiques représentent le fonctionnement
d’un écosystème. L’étude de la variabilité des ré-
seaux d’interactions permet de comprendre com-
ment les écosystèmes sont affectés par des fac-
teurs externes. Cette thèse propose une métho-
dologie d’analyse des réseaux bipartites, applicable
aux réseaux écologiques mutualistes. Cette métho-
dologie est basée sur les U -statistiques de matrices
échangeables ligne-colonne. Les matrices échan-
geables ligne-colonne sont des matrices aléatoires
dont la distribution de probabilité jointe est inva-
riante par permutations simultanées des lignes et
des colonnes. Les U -statistiques correspondent à la
classe des statistiques définies comme la moyenne
empirique d’une fonction d’un sous-ensemble, sur
tous les sous-ensembles d’observations. Les U -
statistiques des matrices sont la moyenne de la
fonction d’une sous-matrice sur l’ensemble des ma-
trices. En analyse de réseaux, les matrices échan-
geables ligne-colonne sont les matrices d’adjacence
de réseaux bipartites à nœuds échangeables et
les U -statistiques peuvent être utilisées comme es-
timateurs de quantités d’intérêt. Cette thèse se
concentre sur le comportement asymptotique des
U -statistiques des matrices échangeables ligne-
colonne. Dans la première partie, les martingales
inverses sont utilisées pour obtenir un théorème
limite sur les U -statistiques de matrices échan-
geables ligne-colonne. Dans la deuxièmepartie, une

décomposition de type Hoeffding est établie pour
ces matrices, ce qui étend le théorème limite pré-
cédent. Inspiré par cette décomposition, un esti-
mateur de la variance asymptotique est également
suggéré, permettant de proposer une méthode gé-
nérale pour effectuer des tâches d’inférence statis-
tique sur des modèles de réseaux échangeables. La
troisième partie de la thèse étend la méthodologie
aux U -statistiques dégénérées, qui ont un taux de
convergence plus rapide. Ces développements sta-
tistiques sont appliqués à l’analyse des réseaux bi-
partites, y compris les réseaux écologiques mutua-
listes. De nombreuses questions écologiques s’in-
téressent à la structure générale des réseaux plu-
tôt qu’à la liste des espèces présentes. Les modèles
de réseaux aléatoires à nœuds échangeables, dont
les matrices d’adjacence sont échangeables ligne-
colonne, sont donc bien adaptés à l’analyse de ces
réseaux. LesU -statistiques sont utilisées commees-
timateurs de quantités d’intérêt telles que l’hétéro-
généité des degrés, les densités de motifs ou des
métriques sur les graphons. Il est possible d’obtenir
des garanties statistiques pour ces estimateurs, par
exemple sous la forme d’intervalles de confiance,
grâce aux résultats théoriques et à la méthodologie
développée dans cette thèse. Quelques exemples
de modèles de réseaux aléatoires échangeables et
de U -statistiques sont donnés, répondant à des
questions écologiques réelles. Des études de simu-
lation sont utilisées pour valider l’utilisation de cette
méthodologie sur ces exemples.
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Abstract: The work presented in this thesis is
essentially theoretical, but motivated by ecological
applications. Ecological interaction networks repre-
sent the functioning of an ecosystem. Investigat-
ing the variability of interaction networks enables
us to understand how the ecosystems are affected
by external factors. This thesis suggests a method-
ology to analyze bipartite networks, applicable to
ecological mutualistic networks. This methodology
is based on U -statistics of row-column exchange-
able matrices. Row-column exchangeable matrices
are random matrices, the joint probability distribu-
tion of which is invariant by simultaneous permuta-
tions of rows and columns. U -statistics correspond
to the class of statistics defined as the empirical
mean of a function of a subset, over all subsets of
observations. U -statistics of matrices are the av-
erage of a submatrix function over the entire ma-
trices. In network analysis, row-column exchange-
able matrices are the adjacency matrices of bipar-
tite node-exchangeable networks and U -statistics
can be used as estimators of quantities of inter-
est. This thesis focuses on the asymptotic behav-
ior of the U -statistics of row-column exchangeable
matrices. In the first part, backward martingales
are used to derive a limit theorem on U -statistics
of row-column exchangeable matrices. In the sec-
ond part, a Hoeffding-type decomposition is estab-

lished for them, which extends the previous limit
theorem. Inspired by this decomposition, an esti-
mator of the asymptotic variance is also suggested,
making it possible to propose a general method for
performing statistical inference tasks on exchange-
able networkmodels. The third part of the thesis ex-
tends the methodology to degenerate U -statistics,
which have a faster rate of convergence. These
statistical developments are applied to the analysis
of bipartite networks, including mutualistic ecologi-
cal networks. Many ecological questions are inter-
ested in the general structure of networks rather
than the collection of present species. This makes
exchangeable random network models, the adja-
cency matrices of which are row-column exchange-
able, well-suited to analyze these networks. U -
statistics are used as estimators of quantities of in-
terest such as the degree heterogeneity, motif den-
sities or graphon metrics. It possible to obtain sta-
tistical guarantees on these estimators, for exam-
ple in the form of confidence intervals, owing to the
theoretical results and the methodology developed
in this thesis. Some examples of exchangeable ran-
dom network models and U -statistics are given, an-
swering real ecological questions. Simulation stud-
ies are used to validate the use of this methodology
for these examples.
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Preface

This thesis presents the work I carried out during three years as a doctoral candidate at the
MIA Paris laboratory under the supervision of Stéphane Robin, Sophie Donnet and François
Massol. This preface is by no means essential to the thesis, but its intend is to prepare the
reader before getting to the heart of the matter. First, it sets out the general context of my
research, including the questions and elements that have guided the course of this work. Then
it introduces some basic notions and definitions that may be useful in understanding the rest of
the thesis. Finally, it briefly explains the structure of the thesis, so that the reader is aware of
how the chapters relate to each other.

Context

This thesis focuses on the asymptotic behavior of U -statistics on row-column exchangeable
matrices. This work is mainly theoretical, but is strongly motivated by applications to the
analysis of ecological networks. Indeed, in ecology, most studies do not focus on a single network,
but a collection of networks sampled under different conditions, at different locations or at
different times. By jointly analyzing the networks in the collection, we hope to obtain information
on network variability in space and time, and the influence of external perturbations. However,
there is no general methodology for such studies. In the ecological literature, methods are
specific to the available data and to the different biological issues under investigation. The aim
of this thesis is to propose a more versatile method for studying ecological networks.

There are many types of networks in ecology. The most widely studied are species interaction
networks. These networks often focus on a particular type of interaction. These networks have
different properties, depending on the type of interaction. We have chosen to focus mainly on
bipartite networks, such as pollination networks (Fig. 1). The starting point for this work was
therefore to develop a comparison method for these networks. When compared to networks of
other fields, ecological networks have specific properties.

Firstly, these networks are the aggregation of individual interaction data. Depending on
how we choose to aggregate the data, we may obtain different networks (Fig. 2). For example,
we can group interactions at different taxonomic ranks (by species, genus, family, etc.), over

xxiii
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Figure 1 – A binary pollination network links plants to the insects that visit them. Figure taken
from Fontaine (2009).

different periods (by day, month, year, etc.), over different geographical areas (by observation
site, region, etc.).

Figure 2 – The question of data aggregation is a recurrent problem in ecological networks. Top:
a seed dispersal network. Bottom: the interaction data has been split by vegetation types,
leading to different structures. Figure taken from Timóteo et al. (2018).

The sampling method also affects the topology of the network. For example, in pollination
networks, a single insect can be sampled as interacting with only one plant species, e.g. if
caught using hand net after observation of the visit. The same insect can also be observed
to have visited several flowers of this plant, resulting in many interactions, instead of only a
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single, on this plant. This same insect could also be sampled as interacting with many plants,
if interactions are analyzed through the pollen found on the insect. Despite being the same
individual, interactions can be sampled differently, which lead to different data.

Above all, sampling effort plays a crucial role in ecological interaction networks. The re-
constructed network is often only part of the complete network, and it is difficult to know how
much effort is needed to be certain of having sampled the entire network. There is therefore a
notion of uncertainty inherent in the data.

Finally, because of the issue of sampling, or also more simply because the networks are
observed in different places or at different times, they do not necessarily involve the same species.
Therefore, we often end up with a collection of networks, in which the individual networks have
different sets of nodes, potentially of different sizes.

My approach to designing a methodology was therefore motivated by three guidelines.
Firstly, the method must not only be able to characterize a network, but above all it must
be able to analyze several networks alongside each other. For example, such a method must be
able to be used to compare networks. Secondly, it must take into account the specific features
of ecological interaction networks, in particular the characteristics described above. Finally, it
must be able to answer ecological questions. It is easy to say whether two observed networks are
identical, but it is more difficult to know to what extent they differ, whether these differences
are significant and above all, how to interpret them from an ecological point of view.

The methodology devised in this thesis is supported by two main pillars: exchangeable
random graph models and U -statistics. The first, random graph models, allows us to consider
that each observed network is the realization of a certain random model. This makes it possible
to capture the source of variability in the networks that is due solely to chance. The legitimacy of
using exchangeable models in particular will be justified in the introductory chapter of the thesis.
Notably, these models make it possible to obtain interesting properties for U -statistics, which
are the second pillar of this methodology. These are a class of statistics generalizing the concept
of empirical mean, which will be mainly used as estimators. To construct my methodology, I
have established theoretical properties for the mathematical objects involved, i.e. exchangeable
random graph models and the U -statistics applied to these models. Nevertheless, the initial
application objective has never been lost sight of.
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Mathematical notation and basic definitions

Here, I present some notations used in the thesis, then I give some general definitions of
network and graph theory. A few notions are briefly discussed, but the experienced reader will
be able to skim over this part, which aims more to introduce notations than to explain these
notions in detail.

Sets and k-tuples

Let B be a set. We denote ∣B∣ or alternatively Card(B) the cardinal of B. If B is an infinite
set, we write ∣B∣ =∞ or Card(B) =∞. In this thesis, N is the set of positive integers {1,2, ...}.
Unless explicitly specified, it does not include 0. JnK is the set {1, ..., n} of the n first elements
of N. Let C be another set. If C is a subset of B, we denote C ⊆ B. If futhermore, C ≠ B, then
we write C ⊂ B. For k ∈ N, we denote Pk(B) the set of all subsets of B with cardinal k.

Let I be a set. A family (bi)i∈I is a collection of elements bi belonging to B and indexed
by I. We denote {bi ∶ i ∈ I} the set of elements of this family. If I is ordered, then (bi)i∈I is a
process. In addition, if I is countable, then (bi)i∈I is a sequence.

An n-tuple is an ordered collection of n elements. These elements can belong to different
sets. Suppose that for each k ∈ JnK, bk belongs to a set Bk. The sets of all the n-tuples (b1, ..., bn)

is denoted B1 × ...×Bn =∏
n
k=1Bk. If all the sets Bk are ordered, for 1 ≤ k ≤ n, and (a1, ..., an) is

another n-tuple of ∏n
k=1Bk, then the notation (a1, ..., an) ≤ (b1, ..., bn) means that ak ≤ bk, for all

1 ≤ k ≤ n. In addition, the notation (a1, ..., an) < (b1, ..., bn) means that (a1, ..., an) ≤ (b1, ..., bn)

and (a1, ..., an) ≠ (b1, ..., bn).

Some notations of analysis and probability

Let E be a set and f ∶ E → R a real-valued function. Let c ∈ R. f ≡ c means that f is the
constant function with value c everywhere on its domain E.

Let g be another real-valued function defined on E. f a.e.
= g means that f and g are equal

almost everywhere, i.e. they are equal on all their domain except for a set of measure 0.

Let γ(E) be an element of E or its boundary, or infinity. f(e) = oe→γ(E)(g(e)) means that
for all constants C > 0, there is a neighborhood of γ(E) in which ∣f(e)∣ ≤ C ∣g(e)∣. f(e) =

Oe→γ(E)(g(e)) means that for any neighborhood of γ(E), there is a constant M > 0 such that
∣f(e)∣ ≤ M ∣g(e)∣ in this neighborhood. f(e) ≍e→γ(E) g(e) means that we have both f(e) =
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Oe→γ(E)(g(e)) and g(e) = Oe→γ(E)(f(e)). Often, we use these notions for E = N and γ(E) =∞.
In this case, there is no ambiguity and we will write more simply f(n) = o(g(n)), f(n) = O(g(n))
and f(n) ≍ g(n).

Let X and Y be two random variables. The equality of these two variables in distribution
is denoted X

D
= Y . The almost sure equality, i.e. P(X = Y ) = 1, is denoted X

a.s.
= Y .

Let (Xn)n≥1 be a sequence of random variables and (an)n≥1 a sequence of constants. Xn =

oP (an) means that for all C > 0, we have limn→∞ P(∣Xn∣ ≤ C ∣an∣) = 1. Xn = OP (an) means that
for all ϵ > 0, there is a constant M > 0 such that ∀n ≥ 1, we have P(∣Xn∣ ≤M ∣an∣) < ϵ.

Networks and graphs

Networks A network is a system of interconnected entities. As such, it is made up of nodes,
representing the entities, connected by links, representing the relationships between the entities.
These relationships can sometimes be quantified. In this case, the links can be associated with
real values (beyond 0 and 1) and the network is said to be valued or weighted. Otherwise, the
network is said to be binary. These relationships can also have a direction. In this case, the
network is said to be directed. In this thesis, I only consider undirected networks, meaning that
all interactions are symmetric.

A network is said to be multipartite if it has several sets of nodes and links only connect pairs
of nodes from different sets. These sets of nodes are sometimes called levels and multipartite
networks can sometimes be found under the name of multilevel networks. In this thesis, only
cases with a maximum of two different sets will be considered. These networks are referred to
as bipartite. Sometimes, to distinguish the simple case from the multipartite case, we say that a
network is unipartite if it is not multipartite. Figure 3 shows an example of tripartite network.

Graphs The natural mathematical object used to study networks is the graph. A graph is
made up of two sets: a set of vertices and a set of edges. Obviously, the vertices of a graph
represent the nodes of a network and the edges represent the links, so we can use these terms
interchangeably.

Let G be a graph. We write G = (V (G),E(G)), where V (G) is the set of the nodes of G
and E(G) ⊆ P2(V (G)) the set of edges. Without loss of generality, we can label each node by
a natural number so we assume V (G) ⊂ N. We denote v(G) = ∣V (G)∣ and e(G) = ∣E(G)∣ the
respective number of nodes and of edges of G. A weighted or valued graph taking values in B is
a graph with an associated weight function w ∶ E(G)→ B. This function associates each edge of
G to its corresponding value. If w ∶ ez→ w(e) = 1, then w can be omitted and the graph is not
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Figure 3 – A tripartite binary network representing researchers, their countries and attendance
to international workshops (years). The size of the nodes indicate degrees, i.e. the sums of links
stemming from the nodes. Figure taken from Ambrosiano et al. (2020).

valued. To distinguish the valued case and the non-valued case, we say that G = (V (G),E(G))
is a binary graph in the latter case.

A subgraph of G is a graph F such that V (F ) ⊂ V (G) and E(F ) ⊂ P2(V (F )) ∩E(G). We
write F ⊂ G. A path in G is a sequence of nodes i1, ..., iK such that for all 1 ≤ k ≤K − 1, ik and
ik+1 are connected by an edge, i.e. {ik, ik+1} ∈ E(G). A graph is connected if all pairs of nodes
can be linked by a path. A connected component F of G is a maximal connected subgraph of
G, i.e. a connected subgraph such that adding any other node of G/F and all its edges makes
the new subgraph not connected.

A graph can also be used to represent a bipartite network. In a bipartite network, we can
find a partition of V (G) into two disjoint sets V1(G) and V2(G), i.e. V1(G) ∩ V2(G) = ∅ and
V1(G) ∪ V2(G) = V (G), such that E(G) ∩ (P2(V1(G)) ∪ P2(V2(G)) = ∅. However, the graph
object is only moderately suitable for modelling bipartite networks because these constraints
are complex and yet necessary. We therefore propose to define a simpler bipartite graph object
with a simple constraint.

By placing an order between the two sets of nodes, we can define G = (V1(G), V2(G),E(G))

where V1(G) is the "first" set of nodes, V2(G) the "second" set of nodes and E(G) ⊂ V1(G)×V2(G)

the set of edges. By analogy with the adjacency matrices that will be defined later, we also call
V1(G) the row nodes and V2(G) the column nodes. This definition imposes an artificial direction
on the edges, since each edge is a couple instead of a set of two nodes. However, the first element
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of the couple is always part of the first set and the second is always part of the second set. This
is just a benign consequence of the fact that we have decided that there is a "first" and a "second"
set of nodes. This definition also allows the labels of the two sets of nodes V1(G) and V2(G) to
overlap. This is not a problem because the roles of the two sets are already distinct by definition.
The cardinals of the new sets of nodes can be denoted by v1(G) = ∣V1(G)∣ and v2(G) = ∣V2(G)∣.

Valued bipartite graphs can also be defined by associating a weight function in the same
way as for unipartite graphs. A subgraph F of the bipartite graph G is a graph such that
V1(F ) ⊂ V1(G), V2(F ) ⊂ V2(G) and E(F ) ⊂ (V1(F ) × V2(F )) ∩ E(G). The notions of path
and connected component remain the same. The only subtlety lies in the fact that a path is a
sequence alternating between elements of V1(G) and elements of V2(G).

Useful operations are the union and intersection of graphs. We denote the union of two bipar-
tite graphs G1 and G2 by G1∪G2 = (V1(G1)∪V1(G2), V2(G1)∪V2(G2),E(G1)∪E(G2)). Analo-
gously, the intersection of two bipartite graphs G1 and G2 is G1∩G2 = (V1(G1)∩V1(G2), V2(G1)∩

V2(G2),E(G1) ∩E(G2)).

Adjacency matrices The other useful mathematical object for representing networks is the
adjacency matrix. This representation will be extensively used in this thesis because it is par-
ticularly convenient. It provides a simpler representation of networks, particularly for defining
random models on them. It also allows us to use linear algebra tools directly to carry out op-
erations on networks. Mm,n(B) denotes the set of matrices of size m × n with values in B and
Mn(B) the set of square matrices of size n × n with values in B.

Without loss of generality, let us label here the nodes of a unipartite graph G by the first
integers V (G) = Jv(G)K. The adjacency matrix A(G) of the graph G, with weight function w

with values in B (w ≡ 1 if G is a binary graph) is the matrix of Mv(G)(B) defined by

A(G)ij =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

w({i, j}), if {i, j} ∈ E(G)

0, otherwise,

for (i, j) ∈ V (G)2. The adjacency matrix of a unipartite (undirected) graph is therefore sym-
metrical. Each row and each column represents a node. The symmetry comes from the fact that
the i-th row represents the same node as the i-th column. Figure 4 shows a unipartite graph
and its adjacency matrix.

For a bipartite graph G = (V1(G), V2(G),E(G)), we assume without loss of generality that
nodes are labelled by positive integers starting at 1, i.e. V1(G) = Jv1(G)K and V2(G) = Jv2(G)K.
G is associated with a weight function w with values in B (w ≡ 1 if G is a binary graph). We
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Figure 4 – A binary unipartite graph (left) and its adjacency matrix (middle). Equivalently,
since the graph is binary, the adjacency matrix can be represented by a pixel map in [0,1]2

(right), where [0,1]2 is subdivided into n×n patches, and black patches represent the 1s of the
matrix. Figure taken from Lovász (2012).

define the adjacency matrix A(G) ∈Mv1(G),v2(G)(B) as follows:

A(G)ij =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

w(i, j), if (i, j) ∈ E(G)

0, otherwise.

Note that the adjacency matrix of a bipartite graph is not symmetrical and it may be rectangular.
This is because the rows represent the nodes of V1(G) (row nodes) and the columns represent
the nodes of V2(G) (column nodes), i.e. different nodes with distinct roles.

Figure 5 illustrates the duality between networks and matrices. The original dataset consists
of a list of countries and their performance indices for each of the 17 Sustainable Development
Goals defined by the United Nations. This is more naturally represented by a matrix, but this
matrix can also be considered as the adjacency matrix of a network, which enables the use of
network science tools to analyze the data (Sciarra et al., 2021).

Random graph or network models A network is random if its corresponding graph is a
random variable. This means that the graphs of observed networks are the result of a random
experiment. A random network (or graph) model defines the distribution of this random variable.
To define models, it is sometimes simpler to use adjacency matrices, i.e. to define the distribution
of Y = A(G) instead of first defining the distribution of G and then deducing the distribution
of A(G).

A random graph model can be defined by this distribution on the matrix Y . We often
use the term joint distribution to distinguish between the distribution of the entire matrix and
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Figure 5 – A bipartite weighted network connecting seven countries and the 17 Sustainable
Development Goals (SGDs) defined by the United Nations. The links are weighted with a
performance index between 0 and 1 as defined by Lafortune et al. (2018) based on indicators
defined by UN General Assembly (2017). The dataset is naturally represented by a matrix,
but Sciarra et al. (2021) used network analysis methods to rank countries depending on their
performance. Data for 2020 from Sachs et al. (2020), figure taken from Sciarra et al. (2021).

that of one entry Yij of the matrix. The joint distribution contains information about both the
distribution of all Yij and their dependency structure. In the general case, it is not necessarily
easy to find the distribution of a single Yij . This must be obtained by "marginalizing" P(Y ), i.e.
by integrating it with respect to all the other entries of the matrix.

Structure of the thesis

The thesis consists of an introductory chapter, three chapters grouping together various
contributions, and a concluding chapter. The introductory chapter presents the problem this
thesis is interested in studying, as well as the various contributions of this thesis. The main
mathematical notions will also be introduced in this chapter.
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The following three chapters are not organized by theme, but correspond to successive works
in chronological order, some intended for publication in scientific articles. The first chapter
lays the foundation stone for the proposed methodology. It corresponds to a theoretical article,
published in ESAIM: Probability & Statistics. Then, as time went by, new theoretical results
enabled us to considerably improve this methodology. These improvements will be presented in
a second article, which has been submitted in a statistics journal. A chapter is dedicated to this
article. Finally, the last contribution chapter was written in the month prior to submission of this
thesis and presents my latest work, which establishes results that significantly complement the
methodology developed in the second article. Because the final methodology is the culmination
of all these developments, the most complete version of this methodology will be explained in
this chapter. This could be the subject of a future article. These three chapters reflect my
progress in solving the initial problem. As the first two are independent articles, some elements
are redundant. This is not the case with the last chapter, which was written specifically for this
thesis.

Finally, the concluding chapter of this thesis offers suggestions for further work. For the
most part, these are avenues that I have begun to explore but not developed in more detail.
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1.1. Networks and models

A network is a system consisting of multiple entities (nodes) and their pairwise relationship
(links). Networks are omnipresent in real-life data and therefore they can be found in a large
variety of contexts. However, they are complex objects and their analysis has been limited by
the lack of mathematical theory, at least until the 19th century and the development of graph
theory, combinatorics and probability theory. The exponentially increasing complexity of the
interconnected world in the most recent century has led to the development of network theory
to investigate complex systems. Despite the different systems they represent, networks share a
common trait. Relationships between entities hold at least as much importance as the collection
of entities. This is apparent as the natural mathematical object used to represent the networks
is the graph, in which entities are represented by the vertices and relations by the edges of a
graph. The key to most questions raised in network analysis is to understand regularities or
rules in the pattern of links between nodes. With that in mind, network science has emerged as
a field itself which benefits a multitude of apparently disparate science areas, including physics
(especially statistical mechanics), biology, sociology, computer science, etc. (Barthélemy, 2011;
Perna and Latty, 2014; Saavedra et al., 2014; Fortunato et al., 2018). Figure 1.1 shows two
examples of trade networks, where nodes are countries and links are export activity. One might
expect the two networks to show similarities, but the question is to what extent and, if there are
significant differences, how to interpret them. Figure 1.2 represents a biological network, where
nodes are proteins and links are their interactions. One interesting question is to understand
the structure of this network, which gives information about the mechanisms determining the
interactions.

One of the main objectives around network analysis is to link the observed networks to theory,
i.e. to understand the processes producing the networks and their variability. Network models
can be used to integrate these processes and how they affect networks. The aim of random
network models is to add controlled sources of heterogeneity and variability. Before presenting
any analysis strategy involving models, I first give a few examples of historical random network
models taken from classical network theory. These models have been used to analyze networks
in many areas of science.

Network models can be classified into two families that I call procedure-based models and
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Figure 1.1 – World export activity networks for transportation (top) and financial (bottom)
services from the OECD-WTO Balanced Trade in Services database (Fortanier et al., 2017).
Figure taken from Tajoli et al. (2021).

Figure 1.2 – Protein interaction network in the yeast Saccharomyces cerevisiae, colours indicates
the effects of removing the corresponding protein in the yeast (red = lethal, green = non-lethal,
orange= slow growth, yellow=unknown). Figure taken from Barabasi and Oltvai (2004).

likelihood-based models. The distinction between these two families lies in the definition of the
model. A procedure-based model is defined by an initial network which is iteratively modified by
some algorithm, possibly stochastic. A likelihood-based model is directly defined by a probability
distribution on the network adjacency matrix. The likelihood of a network is the probability that
the model generates that network. Obviously, a procedure-based model yields a distribution on
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the network adjacency matrix and a likelihood-based model can be simulated with an algorithm.
However, neither the probability distribution of a network generated by a procedure-based model
nor the algorithm to simulate a network according to a likelihood-based model are necessarily
straightforward. When both are actually possible, the model can be considered as both likelihood
and procedure-based.

1.1.1. The Erdős-Rényi model and some variations

The following models are introduced as they originally appear in the literature. Therefore,
most are unipartite binary graph models. However, most can be transposed into a bipartite or
weighted setup without difficulty.

The Erdős-Rényi (ER) model is often considered as the simplest random graph model. In
reality, two related but distinct models are referred to as the ER model. Erdős and Rényi (1959)
introduced the Gn,M model with two parameters n, the number of nodes, and M , the number
of edges. Then, the M edges are distributed to connect M pairs of nodes. The other model,
denoted Gn,p has been introduced by Gilbert (1959). It has two parameters n the number of
nodes and p a probability. The random graph is generated by connecting each pair of nodes
independently with probability p (Fig. 1.3). When n → ∞ and M = np where p is fixed, both
models are asymptotically equivalent.

However, for some finite n, they cannot be confused with each other. Whereas the Gn,p

model is both procedure and likelihood-based, the Gn,M model is only procedure-based. In the
Gn,p model, all edges are i.i.d. with a Bernoulli distribution by definition. In the Gn,M , the final
graph has been uniformly sampled from the set of graphs with n nodes and M edges. The joint
distribution of its adjacency matrix can be calculted, but it is complex due to the dependency
induced by the constraint of fixed number of edges. This property makes the Gn,p model easier
to study and therefore more widely used. In this thesis, unless explicitly specified, the ER model
will refer to the Gn,p model.

Figure 1.3 – Gn,p graphs for fixed n, different values of p. Figure taken from Newth (2006).
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The graphs generated by these models are particularly homogeneous. As a result, they do not
describe a large number of empirical networks very well. Real-life networks commonly exhibit
two properties.

First, Barabási and Albert (1999) have highlighted the property of scale-free invariance.
Scale-free invariance refers to degree distributions, which in the case of real networks, often
follow a power law. This property is related to the notions of growth and preferential attach-
ment (de Solla Price, 1976): when a new node is added to an existing network, it is more likely
to connect to nodes that are already strongly connected (high degree nodes). Thus, edges cannot
be drawn uniformly at random and degrees are inhomogeneous.

Second, the small-world property states that the length of the path between two randomly
selected nodes is small (Watts and Strogatz, 1998), i.e. it has high clustering coefficient. This
property was first identified in sociology, where it was shown that in the studied populations, only
a short chain of relationships separates on average two individuals who do not know each other
(Milgram, 1967). Indeed, it is often observed that the expected length of this chain only increases
logarithmically with the size of the population. Scale-free networks also exhibit the small-
world property (Cohen and Havlin, 2003). This property is notably observed in plant-pollinator
networks, where this growth is sometimes even slower (Olesen et al., 2006). Nevertheless, the
sample size required to verify such a property is rarely reached in ecology.

Networks with the small-world property, and therefore the scale-free property, often feature
"hubs" (Fig. 1.4). Hubs are highly connected nodes, which in consequence are some kind of
central nodes. They play significant roles in both the scale-free property and the small-world
property. They are partially responsible for the asymmetry in the degree distribution, leading to
the typical power law distribution of scale-free networks. Hubs also accounts for the small-world
property when the network is said to be assortative, i.e. highly connected nodes tend to connect
with each other. In this case, the paths that connect any pair of individuals only need to pass
through a few hubs. Hubs do not appear in ER graphs.

Variations of the ER model have been suggested to incorporate these properties featured in
real networks. The Watts-Strogatz model (WS) (Watts and Strogatz, 1998) and the Barabási-
Albert model (BA) (Barabási and Albert, 1999) are two among the most famous ones. These
two models are procedure-based. The WS starts with a ring lattice and use random rewiring
to generate a graph with the small-world property. The BA starts with a small fully connected
graph and nodes are iteratively added. Each newly added node connects to each existing ones
with a higher probability if the degree of the existing node is higher. This yields a network
with the scale-free property. These two models are examples of models designed to mimic a few
selected macroscopic properties of real-life networks.
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Figure 1.4 – Left: a Gn,p network. Middle: a Watts-Strogatz (WS) network. Right: a Barabási-
Albert (BA) network. Although the WS and BA generate networks with different structures,
they both lead to the formation of hubs (highly connected nodes). Figure taken from Koutrouli
et al. (2020).

1.1.2. Configuration models

The configuration model (CM) has origins in ecology and null models, where Connor and
Simberloff (1979) used such a model to study island species distribution with presence-absence
data, binary matrices describing which species is present on which island. These matrices can be
viewed as adjacency matrices of bipartite networks. The CM aims to generate random networks
with particular fixed degree sequences, that are also called marginals. It is related to the Gn,M

model as it comes to uniformly pick a network from the set of networks respecting a set of
constraints (the number of edges in the Gn,M model, with the addition of the marginals in the
CM). A related mathematical question has been investigated by Bender and Canfield (1978)
and Bollobás (1980), on models of random matrices with fixed marginals.

Simulating such networks had been a complex issue for a long time, although it has been
partially solved. Many algorithms have been proposed. Gotelli and Entsminger (2001, 2003)
described several types of "fill" and "swap" algorithms (Fig. 1.5). Fill algorithms build a net-
work by sequentially drawing edges between the nodes. Because the network has to satisfy the
marginal constraints, these algorithms have to backtrack when no more edge can be added with-
out breaking the constraints, which explains their computational cost. To solve this problem,
swap algorithms start with an observed network and at each iteration, they swap a couple of
edges. After any number of iterations, the modified network still satisfies the constraints. How-
ever, the distribution of the sequence of networks obtained at each iteration is a Markov chain,
so the distribution of the network obtained even after a large number of iterations may not be
uniform, despite achieving stationarity. Miklós and Podani (2004) proved that the trial-swap
algorithm, a slight modification of a swap algorithm, is unbiased. However, its complexity makes
it difficult to apply in practice. The current state-of-the-art method has been found by Strona
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et al. (2014), who designed an algorithm to generate networks with unbiased distribution in
fewer iterations than simpler swap algorithms. This algorithm is relatively fast for networks of
moderate size (104 × 104 nodes). Therefore, the simulation issue is circumvented when at least
one network reproducing the constraints, needed to initialize the algorithm, is already known.
This requirement is fulfilled in null model analysis, a common analysis approach in ecology that
will be presented later.

Figure 1.5 – Two procedures generating networks from a configuration model. Top: a fill al-
gorithm starts with nodes and stubs corresponding to a given degree sequence, ends with all
the stubs connected. Bottom: a swap algorithm starts with a network, at each iteration, two
edges are selected and are swapped, e.g. (s1, t1) and (s2, t2) are swapped to (s1, t2) and (s2, t1).
Figure taken from Zamora-López (2009).

The marginal constraints have been softened in several variations of the CM. Instead of
using specific degree sequences, Newman et al. (2002) used distributions of degrees. Each node
draws independently its degree from a multinomial distribution, so that the sequence of degrees
is a random sample. Then, networks can be sampled using the previously listed algorithms.
Chung and Lu (2002) added another type of variability by using "expected" degree sequences. Its
bipartite version can be formulated as follows. The two sets of nodes of the bipartite network have
respective sequences of expected degrees (di)1≤i≤m and (ei)1≤j≤n such that ∑m

i=1 di = ∑
n
j=1 ej =

L and L ≥ maxi,j(di, ej), the node i of the first set and j of the second set are connected
with probability pij =

diej

L . Therefore, the Chung-Lu model allows fluctuations of the degrees
around the specified expected degrees. Combining both sources of variability, the expected
degree distribution model (EDD) (Picard et al., 2008) lets each node draw its expected degree
in a distribution. In contrast to the degree sequence models, the expected degree sequence
models (the Chung-Lu model and the EDD) are both procedure-based and likelihood-based, so
generating networks is simple and expressing the joint distribution of the network is easier.
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1.1.3. Exponential random graph models

Holland and Leinhardt (1981) suggested the p1 model, a likelihood-based model for unipar-
tite directed networks. The adjacency matrices of these networks are square, but potentially
asymmetric. For a pair of nodes (i, j), Yij = 1 if there is a directed connection from i to j,
Yij = 0 otherwise. The pairs of nodes are independent and there are thus 4 possibilities for
Aij = (Yij , Yji), to which the following probabilities are assigned:

logP(Aij = (0,0)) = λij

logP(Aij = (1,0)) = λij + αi + βj + γ

logP(Aij = (0,1)) = λij + αj + βi + γ

logP(Aij = (1,1)) = λij + αi + βj + αj + βi + 2γ + ρ,

hence, for an observed pair of nodes

logP(aij) = λij + yij(αi + βj + γ) + yji(αj + βi + γ) + yijyjiρ.

The coefficients represent several effects that are well known in sociology. αi is the propensity
of node i to be the starting point of a connection (expansiveness), and conversely βi is its
propensity to receive one (attractiveness). γ is a diffusion effect that controls the density of
interactions and ρ is the propensity of reciprocity, which makes that for a pair of individuals,
interactions in one direction and in the other are not independent. Finally, λij is a normalization
coefficient so that these probabilities sum to 1.

Their model can be transposed to a bipartite undirected setup, with rectangular adjacency
matrices Y of size m × n, where m and n are the number of nodes of the two sets. Let γ,
(αi)1≤i≤m, (βj)1≤j≤n and (λij)1≤i≤m,1≤j≤n such that

logP(Yij = 0) = λij

logP(Yij = 1) = λij + αi + βj + γ.

hence, for an observed pair of nodes

logP(yij) = λij + yij(αi + βj + γ).

Since all the pairs of nodes are independent, the likelihood of an observed adjacency matrix
y is

P(y) =∏
i,j

P(yij)

= exp(∑
i

yi+αi +∑
i

y+iβi + y++γ) × exp
⎛

⎝
∑
i,j

λij
⎞

⎠
,
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where yi+ is the degree of the i-th node of the first set, y+j is the degree of the j-th node of
the second set and y++ is the number of edges in the network. These terms are easily obtain-
able network descriptors. Group them in a "score" vector x(y) = (y1+, ..., ym+, y+1, ..., y+n, y++)

and group the parameters θ = (α1, ..., αm, β1, ..., βn, γ). The exponential term depending on the
(λij)1≤i≤m,1≤j≤n is a multiplicative normalizing constant depending on θ. Therefore, the likeli-
hood of an observed network given by (1.1) can be written as the likelihood of an exponential
family distribution

P(y) =
exp(θTx(y))

Z(θ)
, (1.1)

where Z(θ) = exp (−∑i,j λij).

Observe that the joint probability distribution of the network falls under the exponential
family where the sufficient statistics are the network descriptors contained in the score vector
x(y). Holland and Leinhardt (1981) suggested to generalize the model by incorporating other
network statistics into the score vector, including the count of particular subgraphs that seem
relevant for characterizing networks. However, the p1 model makes the strong assumption that
the pairs of nodes are independent. This is necessary to obtain this probability distribution, but
this is often too crude an approximation. To relax this assumption, Frank and Strauss (1986)
defined a dependence structure between the nodes of the network and their neighbors, called a
Markov graph: two pairs of nodes are now dependent if they share a node. This model defines
the class of exponential random graph models (ERGMs) or p∗ models, for which it is possible
to embed other types of variables such as global metrics in the score vector x(y). The strength
of ERGMs is to be able to predict an interaction on the basis of what is happening around it:
the expression of the likelihood of a graph is the same as previously defined by the model p1 and
the conditional probability of one edge knowing the rest of the network can be deduced from it:

p(yij = 1 ∣ y−ij
) =

P(y+)
P(y+) + P(y−)

=
exp (θT (x(y+) − x(y−)))

1 + exp (θT (x(y+) − x(y−)))

= logit−1 (θT
(x(y+) − x(y−))) ,

where Y −ij is the whole matrix Y excluding Yij , Y + (respectively Y −) is the whole matrix Y

with Yij = 1 (respectively Yij = 0).

Despite the flexibility of ERGMs, their use is not generalized to all domains besides sociology.
The lack of a suitable estimation procedure is one of the major problems encountered in the
application of ERGMs, this will be explained later. Another inherent caveat of ERGMs is that
they do not represent well the local interactions between small subsets of nodes. Indeed, the
descriptors involved, such as network metrics and subgraph frequencies, summarize the global
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structure of the networks well but struggle to capture local information. This also has the
consequence that the model is often degenerate and unstable (Handcock, 2003; Chatterjee and
Diaconis, 2013). Because of this, on one hand, ERGMs are mostly suited to represent large
networks but on the other hand, their computation cost is too large for these networks.

1.1.4. Latent space models

In many fields, but particularly in social network analysis, it has been common to use latent
structures such as latent groups to characterize a population structure, where individuals within
a group play an equivalent role in the network. For instance, groups could be made of people with
the same social position (White et al., 1976; Faust and Skvoretz, 2002). The same concepts have
been investigated in ecology, where these groups of species with similar roles in an ecosystem
have also been called functions or guilds (Luczkovich et al., 2003; Baskerville et al., 2011).

It is reasonable to use this concept to study networks. Formalizing it mathematically, the
nodes are partitioned into K groups (for a bipartite network, K1 row groups and K2 column
groups). The set of edges between the nodes of group q and the nodes of group ℓ defines a block
(q, ℓ). Thus, Wang and Wong (1987) extended the previously mentioned p1 model so that the
edges which belong to the same block share common parameters. Nowicki and Snijders (2001)
assumed that the groups are unknown and they used latent variables to encode the memberships
of the nodes in the groups. Suppose that there are n individuals in a unipartite network and
(Zi)1≤i≤n are these latent variables, e.g. Zk = q means the k-th individual belongs to the q-th
group. Then the interaction between individuals i and j follows a distribution L, the parameters
of which only depend on the groups to which they belong:

Yij ∣ Zi = q,Zj = ℓ ∼ F(αqℓ). (1.2)

This model is called the stochastic block model (SBM) which is more adapted to the analysis
of network data, because the groups are not observed most of the time. This model induces a
relatively simple latent structure, since all nodes are equivalent within the same group, which
constitutes a mixture of simple models. Typically, for binary networks, F is a Bernoulli distri-
bution and the SBM is a mixture of ERs. Figure 1.6 shows a panel of network structures that
can be described by the discrete latent space defined by SBMs.

The SBM can be considered as a special case of a large class of random graph models
called the latent space models (Goldenberg et al., 2010; Matias and Robin, 2014; Jacobs and
Clauset, 2014). In these models, the underlying process producing the structure of the graph is
determined by a hidden node structure. In the SBM, this hidden structure is the membership
to a group (Zi ∈ {1, ...,K}). Other models define more complex latent spaces, allowing for more
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Figure 1.6 – Different network stuctures explained by binary SBMs with K = 3 and their prob-
ability matrix α. The color of a node indicates its membership of a group. However, these
groups are generally not known before performing inference on the model. a) a modular struc-
ture, where groups correspond to modules, b) a tripartite structure, where nodes from each
group only interact with nodes from other groups, c) a core-periphery structure, where groups
correspond to successive layers, d) a hierarchical tree structure, where each group corresponds
to a level in the tree. Figure taken from Funke and Becker (2019).

flexibility. Notably, Airoldi et al. (2008) extended the SBM to the case where each individual
belongs to a mixture of groups, so the interactions are given by a block average, weighted by
the proportions of this mixture.

The latent space can also be continuous, implying that, conversely to the SBM with a
discrete space, all individuals are potentially different. In latent position models, the notions
of groups and equivalence of SBMs has been abandoned in favour of a mapping of the nodes
into a continuous space, for example Zi ∈ RK . The interactions are then determined by these
hidden node positions, for example by the euclidian distances between them (Hoff et al., 2002)
or their dot product (Young and Scheinerman, 2007). An hybrid approach by Handcock et al.
(2007) adds elements of SBM to latent position models, determining the positions of individuals
by a mixture of normal distribution symbolizing their membership in different groups. Finally,
to refine the differences between groups or positions, some models use a discrete hierarchical
latent space, like a tree. The interactions are then also characterized by the positions of the
individuals in the hierarchy (Clauset et al., 2008). The hierarchical latent space may also be
continuous, like a hyperbola (Asta and Shalizi, 2015).

More generally, the adjacency matrix has values in a set E (e.g. E = {0,1} for binary graphs,
E = R for real-valued graphs, etc.) and the latent variable belong to some latent space F . The
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general form of these models is

Yij ∣ Zi, Zj ∼ L(Zi, Zj),∀1 ≤ i, j ≤ n,

where n is the number of nodes of the network, F is a probability distribution on F and for all
zi, zj ∈ F , L(zi, zj) is some probability distribution on E. Conditionally to the latent variables,
each Yij has a distribution only depending on those of the corresponding nodes Zi and Zj . The
latent variables (Zi)1≤i≤n can be either constant or drawn from some distribution, for example
Zi

i.i.d.
∼ F ,∀1 ≤ i ≤ n.

One advantage of these models is that they are generative models for random graphs. These
latent spaces are used to model the mechanisms producing the network, since they encode the
structure of the network. In all these models, the distribution of individuals in the latent space
is often of as much interest as the interactions themselves (Lubold et al., 2023). One of the
key goals of using these models is therefore to be able to reveal the underlying structure that
generates the network. The model fixes the constraints on this structure: the simpler it is,
the more amenable it is to interpretation. In this respect, the SBM is a simple latent space
model. The information contained in the SBM makes it possible to evaluate the number and
the size of the groups, the memberships of the individuals in the different groups and the role
and interactions between the different groups. This information therefore goes beyond the local
scale and also deals with the organization of the entire population under study. For instance,
McCormick and Zheng (2015) used the latent space estimated by their model to make inferences
about the unobserved social position of certain individuals.

It should be noted that these models can be combined with ERGMs. In fact, the score vector
of ERGMs can incorporate a space characterised by latent variables (Schmidt and Mørup, 2013).
It is the existence of this latent structure that gives them the above-mentioned advantages of
latent space models, although the computational burden of ERGMs has yet to be solved.

1.1.5. Estimation for likelihood-based models

The diversity and flexibility of the models presented above enable them to answer many
network analysis questions. Network models can be used in several ways to explain network
structure. One way for them is to attempt to reproduce the properties of observed networks.
This is the case with some models, such as the BA and the WS, which have been designed to
reproduce specific properties of real networks, namely the scale-free property and the small-
world property. For example, in the BA, the scale-free property is generated by a preferential
attachment process. Preferential attachment can be expected to occur in real-life networks if
they have properties similar to those of the networks simulated by the BA. However, there
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is no guarantee that these properties can be explained by these processes alone. The power
law degree distributions observed in real networks often lack statistical significance (Stumpf
and Porter, 2012). Many models have been shown to generate scale-free networks, but without
implementing the preferential attachment process. Typically, the CM specifies a degree sequence
for the generated networks, so it can simulate networks with a power-law degree distribution,
i.e. with the scale-free property (Massol et al., 2017).

In contrast, in likelihood-based models, the probability distribution of networks is defined.
The processes generating the networks can be incorporated and set by parameters, which lends
flexibility to the models. By estimating parameters using observed networks, we hope to char-
acterize and understand network structure. To do this, we generally study the likelihood func-
tion. If the parameters are unknown, the likelihood function of a model is often denoted by
f(y; θ) ∶= P(Y = y; θ) where Y is the random adjacency matrix of the network, y its realization
and θ is the vector of parameters of the model. In this case, the likelihood of the observed net-
works is a function of these parameters. Given one or a set of observed networks, we can estimate
θ by maximizing the likelihood function, for example. However, this optimization problem is
not straightforward in general, because in many likelihood-based network models, the likelihood
function is well identified, but sometimes untractable. This is the case with ERGMs and many
latent space models.

The difficulty in using ERGMs lies in the normalization constant Z(θ) in equation (1.1),
which is difficult to calculate except for small graphs. Since node pairs are no longer inde-
pendent as in the p1 model, all possible networks would have to be explored. The presence
of this constant makes parameter estimation by maximum likelihood difficult. To get around
this, Strauss and Ikeda (1990) maximizes a pseudo-likelihood function based on the conditional
probabilities of the network edges, which are easier to estimate. However, this pseudo-likelihood
approach leads to results that are generally different from the maximum likelihood estimator.
Although the resulting estimator is consistent and asymptotically normal for a fixed number
of nodes (Arnold and Strauss, 1991), Geyer and Thompson (1992) have shown that it overesti-
mates the dependency in the graph structure and does not give reliable results in practice. For
these reasons, Hunter et al. (2008) advocated approaching maximum likelihood by Monte Carlo
Markov chain methods (MCMC). However, these methods are slow to converge (Bhamidi et al.,
2011) and therefore sometimes inapplicable.

Estimation procedures for latent space models are also complex. These models are defined
using a sequence of latent variables Z = (Zi)1≤i≤n. Usually, the model defines the complete likeli-
hood f(y, z; θ) ∶= P(Y = y,Z = z; θ). The observation likelihood function is obtained by intergra-
tion f(y; θ) = ∫ f(y, z; θ)dz. However, depending on the latent structure, the likelihood function
is often untractable and it is impossible to use simple convex optimization tools to maximize
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it. Sometimes, Bayesian methods or likelihood function approximation methods are required
for estimation. For example, estimation of parameters in the SBM is done through MCMC
(Snijders and Nowicki, 1997; Nowicki and Snijders, 2001) or variational inference (Daudin et al.,
2008; Latouche et al., 2012).

Another tricky problem with likelihood-based models is model selection, i.e. the question of
choosing the form of the model. This concerns, for example, the descriptors to be incorporated
in the score vector of ERGMs, or the shape of the latent space in latent space models when it is
unknown. Selection criteria are also needed to choose the number of groups or dimensions in the
latent space. The link between the complexity of these models and their number of parameters
is non-trivial. It is therefore impossible to use conventional criteria (e.g. the AIC/Akaike
Information Criterion, the BIC/Bayesian Information Criterion) directly. Other selection criteria
need to be adapted, e.g. the integrated complete likelihood (ICL) criterion, initially devised for
simple mixture models (Biernacki et al., 2000), used for selecting the number of groups in SBMs
(Côme and Latouche, 2015).

1.2. Interaction networks in ecology

1.2.1. Ecological interactions

My work has been motivated by the study of ecological interactions between species. Under-
standing these interactions allows to comprehend the role of species, how they affect, or depend,
on each other. In other words, the organization of an ecosystem and the processes governing its
functioning are reflected by the interactions between species (Allee et al., 1949; Paine, 1966).
For this reason, ecologists have been collecting interaction data for a long time (Clements and
Long, 1923; Robertson, 1928). Many ecosystems and many types of biotic interactions can be
represented by networks. Although interaction networks are the most common type of network
in ecology, other types of networks are also considered by ecologists, including spatial network
and animal social networks (Sundaresan et al., 2007; Sueur et al., 2019). Even though data from
ecological surveys, i.e. presence-absence or abundancy data (Bell, 2003), are usually not studied
through networks, they can be seen as graph adjacency matrices so many network approaches
can apply (Thébault, 2013; Vilhena and Antonelli, 2015). By essence, all these ecological net-
works differ in the nature of the represented entities and relationships. Spatial networks connect
locations. Animal social networks involve individuals, not species. Presence-absence data asso-
ciate species to observation sites. It is to be noted that network theory can be used to study
all these types of networks, for example, block models can be useful for spatial networks, as
well as interaction networks. However, these data raise different ecological questions and for
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that reason, the analyses that are used could ultimately vary and the interpretations are not
the same. My focus is placed on interactions networks, although I will sometimes mention the
other types.

Among interaction networks are many different types of interaction that can be represented.
The two main types of interaction are antagonistic and mutualistic. An antagonistic interaction
is characterized by one species taking advantage of another, the former causing harm to the
latter. Food webs (Dunne et al., 2002a; Dobson, 2009), herbivory networks (Villa-Galaviz et al.,
2012; Welti et al., 2017) and host-parasite networks (Sugiura, 2007; Hadfield et al., 2014) are the
main examples. In a mutualistic interaction, the two species involved cooperate, each benefiting
from the other. These include pollination (Ramírez et al., 2011; de Manincor et al., 2020a), where
insects feed on nectar and help dispatch pollen, seed dispersal (Carlo et al., 2003; Schleuning
et al., 2011; Heleno et al., 2013), where animals, e.g. birds, spread seeds after eating fruits,
ant-plant interaction (Blüthgen et al., 2004; Passmore et al., 2012), where plants provide food
and nesting space to ants who protect them from herbivores. Figure 1.7 shows an example of
food web and an example of pollination network.

Given the diversity of ecosystems that can be represented by interaction networks, there
is great hope that many different biological questions can be studied in the light of network
analysis. In particular, my work has been motivated by the study of insect-mediated pollination
networks. In these networks, interactions only occur between two types of species: pollinating
insects and plants. An interaction between an insect and a plant means that the insect has
been observed visiting the plant or, equivalently, that the plant has been observed being visited
by the insect. Because of this constraint, pollination networks are bipartite. As mutualistic
interactions generally involve two species interacting, but each benefiting in a different way,
most mutualistic networks are also made up of two distinct species types and can therefore be
represented in this way. The same applies to certain antagonistic networks, such as herbivory
or host-parasite networks. These differ from food webs, which are unipartite networks, in which
all species can a priori prey on each other. The remainder of this section provides an overview
of ecological network analysis in the literature. I will put the focus on mutualistic networks,
but many analyses can be freely transposed between different types of networks, mutualistic or
antagonistic, unipartite or bipartite, so studies on other types of networks are also mentioned
where relevant.
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Figure 1.7 – A unipartite ecological network and a bipartite ecological network. Top: a food web
from a Chilean coastal ecosystem, the vertical position of each node corresponds to its trophic
level, which indicates the position of the species in the food chain. Figure taken from Pérez-
Matus et al. (2017). Bottom: a pollination network between seven insect species and seven
plant species, the width of the links indicates the frequency of their interaction. Figure taken
from Seo and Hutchinson (2018).

1.2.2. Network structure

The answers to many ecological questions on the organization of ecosystems lie in the struc-
ture of networks. Much work has been carried out to study the determining factors of the
structure of interaction networks. A classic approach is to investigate how species characteris-
tics and preferences influence the network (Carlo et al., 2003; Blüthgen et al., 2004; Bartomeus,
2013; Eklöf et al., 2013; Van Kleunen et al., 2023). Another recurring concern about networks
is about the missing links: does the absence of edge in the observed network means that two
species actually never interact due to ecological reasons or is it a simple consequence of in-
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complete sampling? Using prior knowledge on the species, one can mitigate the sampling bias
by incorporating forbidden links, where two species cannot interact due to known constraints
(incompatible phenology or traits) (Stang et al., 2006; Olesen et al., 2011; Novak et al., 2011).
Jordano (2016) and Dormann et al. (2017) review the principal effects of sampling on interac-
tion networks. However, despite the imperfection of the data, many networks share common
properties that can be ecologically interpreted regardless of the involved species, see for example
Jordano et al. (2003); Blüthgen et al. (2006) and Bascompte and Jordano (2013). Many descrip-
tive metrics claim to measure these properties. Connectance is the proportion of the possible
interactions in the network that actually occur (Jordano, 1987; Dunne et al., 2002b). In other
science areas, connectance is also known as the density of the network. It is one of the simplest,
yet one of the most used metrics. Two other widely used metrics are modularity and nestedness.

Networks can sometimes be separated into compartments (Guimera and Nunes Amaral,
2005), which indicates in ecological networks that several communities coexist (Fig. 1.8). Eco-
logical communities are interacting species in a given area. Each compartment represents the
subnetwork of one community (Dicks et al., 2002). Such structure can arise from co-evolutionary
processes, where species in one community have obtained phenotypic traits favouring interac-
tions with species of its community, for example in pollination networks, specific morphological
constraints allowing insects to open flowers, matching phenologies or plant attractivity attributes
(colors, odor) with respect to insect perception (Olesen et al., 2007; Dupont and Olesen, 2009;
Martin Gonzalez et al., 2012; Maruyama et al., 2014; Carstensen et al., 2016). The metric used
to quantify this phenomenon is called a modularity index. For a given partition of the collection
of the species of a network, an index is computed comparing how much species interact more
within their own group than with species of other groups. The modularity value usually retained
is the maximal value across all possible partitions (Newman and Girvan, 2004), which is not
usually easy to find because it is a NP-complete problem (Fortunato and Barthelemy, 2007;
Fortunato, 2010).

One of the most characteristic features of mutualistic networks is their nested structure (Bas-
compte et al., 2003). Nestedness is the property where both generalist species (having many
interaction partners) and specialist species (having few interaction partners) interact prefer-
ably with other generalist species, while interactions between specialists species are uncommon
(Fig. 1.8). This phenomenon is hypothesized to partially come from the fact that general-
ist species are either more abundant or yield more resources, which are made available to all
species including specialist species (Thompson, 2005; Ollerton et al., 2007). Many indices claim
to measure nestedness in a network (Patterson and Atmar, 1986; Wright and Reeves, 1992;
Brualdi and Sanderson, 1999; Almeida-Neto et al., 2008; Staniczenko et al., 2013), although
they seems to be not always correlated (Podani and Schmera, 2012; Thomas et al., 2015).
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Figure 1.8 – The nested (left) and modular (right) properties for networks and their adjacency
matrices. The typically nested network has an upper triangular adjacency matrix, whereas the
typically modular network has a diagonal block adjacency matrix. Figure taken from Fontaine
et al. (2011).

The modularity and nestedness indices are two examples of classic metrics among many used
to describe ecological networks. Other examples of descriptors are the degree distributions (Jor-
dano et al., 2003), the network specialization (Blüthgen et al., 2006) or densities of a particular
pattern in the network (Simmons et al., 2019; Lanuza et al., 2023). Although some studies
focus on one particular descriptor, it is not uncommon that several are jointly used to analyze
networks (Fonseca and Ganade, 1996; Olesen et al., 2007; Thébault and Fontaine, 2010; de Man-
incor et al., 2020a). Remarkably, these descriptors are usually chosen and interpreted with care.
In fact, many metrics are shown to be intercorrelated (Blüthgen et al., 2008; Fortuna et al.,
2010) or heavily depend on factors which cannot be controlled, e.g. species abundance (Vázquez
et al., 2007). In particular, nestedness metrics have been heavily criticized in recent literature
due to their correlation to connectance (Staniczenko et al., 2013) and to the degree distributions
(Astegiano et al., 2015; Payrató-Borràs et al., 2019). This can lead to biased interpretations.
However, a set of wisely picked metrics is still a convenient way to characterize networks. For
this reason, they can be used to capture the variability of the structure of a network, which is
an essential question in ecosystem analysis.

1.2.3. Network response to environmental changes

Considering that one network is a snapshot of an ecosystem at a given time and place, one
hopes to capture the variability of a network in order to understand how they evolve over time or
under various abiotic conditions. Tylianakis and Morris (2017) suggests that ecological network



In
tr

od
uc

ti
on

1.2. Interaction networks in ecology 19

variability is driven by three main mechanisms: changes in species composition, changes in
interaction probabilities, changes in co-evolutionary processes. For example, drastic alterations
to networks can arise from invasive species (Aizen et al., 2008; Blanchard, 2015; David et al.,
2017) or species removal (Pocock et al., 2012; Heinen et al., 2023).

For this reason, networks give insights on the reaction of ecosystems to external perturba-
tions. Therefore, they can be used to predict the effects of global change (Vitousek, 1994).
For example, climate change, the modification of the biogeochemical cycles, the anthropisation
of natural environments or biological invasions are known to alter ecosystems (Montoya et al.,
2006). On the contrary, some networks are shown to be more robust to these changes (Vila
et al., 2009). Thus, the robustness of a network can indicate how fragile an ecosystem is.

Some ecosystemic services, like the pollination of plants by insects, are essential. Under-
standing the robustness of service-supporting ecological networks is crucial as relevant mitigation
strategies and prevention measures have to be rapidly identified and implemented to preserve or
restore ecosystems (Gill et al., 2016; Kaiser-Bunbury et al., 2017). Figure 1.9 summarizes the
data used by Kaiser-Bunbury et al. (2017) to investigate the effects of vegetation restoration
in lands degraded by human impact. They concluded that restored sites yields more resilient
pollination networks. Burkle et al. (2013) used long-term observation of pollination networks
to identify that these networks had been generally resilient until now. However, progressive
phenology shifts alter the probabilities of interaction. They found that networks have become
increasingly vulnerable and are coming closer to a tipping point, certainly leading to massive
extinction. Therefore, it is paramount to direct conservation efforts to fragile ecosystems. Net-
works can help identify important species to prioritize as their extinction have the biggest impact
on the ecosystems (Memmott et al., 2004; Biella et al., 2017).

Most works aiming to investigate the mechanisms of the structure of ecological networks
study the variability of these networks in space and time (Carlo et al., 2003; Dupont et al.,
2009; Burkle et al., 2013; Carstensen et al., 2016; Miele et al., 2020). Sometimes, observed
networks are associated with environmental covariates. Therefore, many approaches have been
developed to compare the networks alongside ecological gradients, for instance, climatic variables
(temperature, precipitation) combined with altitude (Ramos-Jiliberto et al., 2010; Dalsgaard
et al., 2011; Trøjelsgaard and Olesen, 2013; Pauw and Stanway, 2015) or latitude (Dalsgaard
et al., 2011; Trøjelsgaard and Olesen, 2013; Sebastián-González et al., 2015; de Manincor et al.,
2020b), species diversity (Dalsgaard et al., 2011; Welti et al., 2017), type of habitat (Schleuning
et al., 2011), agricultural land cover (Geslin et al., 2013; Sebastián-González et al., 2015; Redhead
et al., 2018; Neff et al., 2021). Commonly investigated network properties as well as adapted
network analysis methods with respect to ecological gradients are reviewed in Pellissier et al.
(2018). However, most approaches are idiosyncratic, heavily depending on the characteristics



Introduction

20 Chapter 1. Introduction

Figure 1.9 – Pollination networks observed in eight sites on the island of Mahé, Seychelles. The
vegetation has been restored in four sites (white dots), unrestored in the four remaining (black
dots). For each site, eight monthly networks are represented, each corresponding to one month.
The width of the links indicates the frequency of interaction between the two species. Colors in
the network correspond to families of animal species. Figure taken from Kaiser-Bunbury et al.
(2017).

of the data like the associated covariates, the network sizes, the collection of involved species,
which makes them complex to generalize to a generic framework applicable to a large range of
analyses.
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1.2.4. Probabilistic approaches

Ecologists are perfectly aware that an observed network does not represent the complete set
of interactions. In particular, sampling bias has been shown to have a great influence on observed
networks. Differences in sampling methods can lead to different networks (Bosch et al., 2009;
Pornon et al., 2017; Novella-Fernandez et al., 2019; de Manincor et al., 2020a; Dubart et al.,
2021). Figure 1.10 shows two networks built from two different measures of interaction strength.
Since species abundance is a key determining factor for interaction networks (Dupont et al.,
2003; Vázquez and Aizen, 2004; Vázquez et al., 2007), rare species are usually undersampled.
As a consequence, these species appear to be specialists in the observed network (Fründ et al.,
2016), regardless of their actual role in the ecosystem. Incomplete sampling and sampling effort
directly affect various network metrics (Nielsen and Bascompte, 2007; Rivera-Hutinel et al.,
2012; Vizentin-Bugoni et al., 2016). For these reasons, an increasing portion of the literature
use probabilistic models in an attempt to take into account the uncertainty around the observed
networks.

Probabilistic approaches have been extensively used by ecologists for a long time under the
framework of the null model approach. More specifically, generative approaches, using random
graph models, are more and more employed to analyze ecological network (Bartomeus, 2013;
Poisot et al., 2016; Ohlmann et al., 2019; de Manincor et al., 2020b; Herrera et al., 2023).
In random network analysis, model-based approaches are opposed to design-based approaches,
although both can be combined. Design-based approaches assume the observed network to be
sampled from a larger but fixed network according to a sampling design. The randomness comes
from the sampling procedure itself and so therefore no random network model is required to
derive estimators for quantities of interest on the complete unobserved network (see Dall’Asta
et al., 2006, for an example). Conversely, in a model-based approach, the observed network is
a realization of a random variable, the distribution of which is specified by a random network
model.

Discussion around these two paradigms can be found in Handcock and Gile (2010). Al-
though the sampling bias issue in ecology seems to be perfectly solved by using the design-based
paradigm, model-based approaches are in fact more versatile, allowing to incorporate other ran-
domness sources. A random network model can also be used to incorporate the mechanisms
that generate the networks. In this case, generative network models can be used. This is a
blessing in ecology, where one major aim of network analysis is to understand the ecological
processes producing the networks. One would often like to estimate an interpretable parameter
of a network model or to directly use the models themselves for prediction purposes (Seo and
Hutchinson, 2018; Gravel et al., 2019; Valdovinos, 2019). More importantly, measurement er-
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Figure 1.10 – Two networks constructed from the same data. Top: the link width indicates the
number of visits of an insect on a plant species. Bottom: the link width indicates the number
of flowers visited by an insect on a plant species. Figure taken from Novella-Fernandez et al.
(2019).

rors can be obtained more easily than in design-based methods, because in the latter, required
sampling probabilities are unobserved in most designs. In this regard, using a model brings
more statistical guarantees to the estimators. Hence, for ecological applications, model-based
approaches hold decisive advantages over design-based approaches. This is not surprising that
the most common network analysis strategy in ecology, the null model approach, falls under the
model-based family. For an overview of the background and techniques used in the design-based
paradigm, see Frank (2005). This thesis will solely deal with model-based approaches.

1.3. Null model analysis

As we have just seen, in ecological network analysis, one key question is whether the observed
network can be explained by ecological theory. Random network models, of which a few classes
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have been introduced earlier, can sometimes be used to incorporate the mechanisms that generate
the networks. The widely used null model strategy consists in testing the goodness of fit of a
random network model, called the null model, with respect to a some particular network metrics.
I explain this common approach in ecology and outline some of its limitations, motivating my
work to develop a novel model-based methodology.

1.3.1. Principles of hypothesis testing

Before explaining the null model approach, let us recall the principles of statistical hypothesis
testing. The objective of hypothesis testing is to use observed data to reject (or by default, to
accept) a given hypothesis, called the null hypothesis.

First, we assume that the observed data y is the realization of a probabilistic model, i.e.
a random variable Y with some distribution F . Then, we define the null hypothesis H0 to
be tested. Under the null hypothesis, the data Y0 has a theoretical distribution F0. The idea
behind hypothesis testing is to compare F and F0. Ideally, if we can say that F ≠ F0, then we
can reject the null hypothesis H0 with certainty.

However, in practice, it is often impossible to assess from the observed data whether F = F0

or not. We are only able to calculate a probabilistic confidence level based on some function S(y)
of the data, so we investigate whether S(Y ) has the same distribution as S(Y0). Sometimes, we
only dispose of one observation. In this case, we hope to be able to calculate a p-value p, which
is the probability of observing more "extreme" data than y under H0, e.g. P(S(Y0) ≥ S(y)) or
P(S(Y0) ≤ S(y)). If we find a small enough p-value, then we can decide to reject H0.

In network analysis, y is an observed network, assumed to be a realization of some random
Y . The null hypothesis is associated to a random graph model, called the null model, so
that the joint distribution of the networks Y0 generated by the null model is F0. Consider a
network metric S(⋅) of interest. Under the null hypothesis, the distribution of this statistic is the
distribution of S(Y0), where Y0 ∼ F0. Like previously, the p-value is defined as the probability
to observe a more "extreme" statistic than S(y), e.g. P(S(Y0) ≥ S(y)) or P(S(Y0) ≤ S(y)). The
p-value can be used as a criterion to reject H0. For example, in an ERGM (see equation (1.1)),
the elements of the score vector x(y) = (xi(y))i can be seen as variables affecting the probability
distribution of the graph. It may be interesting to test the effect of one x(y)i in the model,
i.e. whether the probabilities of interaction are a function of this variable. This means that we
are looking to reject or accept an hypothesis of the form H0 ∶ θi = 0, where θi is the parameter
associated to the variable x(y)i.
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1.3.2. Null models in for ecological networks

Principles

In ecology, an interesting question is whether the observed network structure is the product
of certain ecological processes or whether it is simply due to chance. An observed network may
have interesting properties. However, if a simple random model reproduces these properties, they
may not be so significant. Only when the random model does not reproduce these properties
can it be said that they are due to other factors that would be worth investigating.

Recall that random graph models introduce heterogeneity and variability in the networks.
Each model controls different sources affecting heterogeneity and variability. To determine
whether a particular process had an effect on the observed network, the null model approach
consists in using a model that theoretically excludes the effects of that process. Therefore, a
null model randomly simulates networks that look like they would have without that particular
process. The observed network is compared to the simulated networks using network descriptors.
In a nutshell, the data is "noisy". We are unsure whether there is a real "signal" (the ecological
process of interest) behind this noise. The null model attempts to simulate noisy data, without
this potential signal. If the empirical data differs significantly from the data simulated by the
null model, then this determines the presence of a signal.

For this question, the use of the statistical hypothesis testing framework is appealing. How-
ever, in studies using the null model approach, the null hypotheses are usually not rigorously
defined. Still, to determine if the data differs from the distribution defined by the null model,
ecologists use p-values, so this is a statistical test under disguise. Defining a null model means
setting a distribution F0 associated to a null hypothesis H0. For a correct interpretation, one
should correctly identify H0 with ecological terms, which is not as simple as it seems and it is
something often overlooked in null models studies.

Models commonly used

The aim of a null model is to generate "maximally" random networks, nullifying a particular
process. For ecological networks, the most common null models consist in shuffling the data
(i.e. the network edges) under a set of constraints, which correspond to the processes that
are retained in the model. We can call these null models constraints-based (see Tab. 1.1 for a
summary of model types).

Classic constraints for network null models are the number of nodes in the network, the
number of edges and the node degrees (marginals). Connor and Simberloff (1979), for the first
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Random graph models

Procedure-based Likelihood-based

Network null models

Constraint-based Process-based

Table 1.1 – The types of models defined in this chapter. These categories are not mutually
exclusive. Random graph models can be used as network null models. A random graph model
can be both procedure-based and likelihood-based. A network null model can be both constraint-
based and process-based.

occurrence of the null model approach in the ecological literature, used these constraints (and
others) to investigate "checkerboard" patterns in presence-absence matrices representing the
distribution of birds species in the islands of an archipelago. In a checkerboard pattern, some
species can be regrouped into sets. Only one of the species of a given set is present on a given
island, i.e. no pair of these species is never observed on a given island. Diamond (1975) observed
that these sets often regroup similar species. He interpreted these checkerboard patterns as the
result of assembly rules dictated by competition between similar species, where some cannot co-
occur as a result. Connor and Simberloff (1979) used a configuration model (CM) to simulate
networks with the same number of links and node degrees as the observed one. This means
that in the generated networks, each island has the same number of species as in the observed
network, and each species are present on the same number of islands as in the observed network.
They found that the checkerboard pattern is equally common in the simulated networks and in
the observed one, implying that this pattern can actually arise by chance, casting doubt above
Diamond’s theory.

Heuristically, the constraints in the null model of Connor and Simberloff (1979) are used to
make the simulated data resemble the observed data. The null model here is used to randomize
the organization of the network under some constraints respected by the observed data. In terms
of statistical testing, using the CM as a null model is equivalent to restrict the support of F and
F0 to graphs that have the same node degrees than the observed ones. The CM stayed widely
used in subsequent null model studies.

Limitations

Despite the simplicity of this approach, it is difficult to ecologically interpret the results
of the above-mentioned approach without ambiguity. The ecological meaning of H0 is not
straightforward. In statistical testing, the statistician defines H0 first. This is the hypothesis in
which they are interested, so F0 is only defined as a consequence. In most null models studies,
the choice of a set of constraints determines the null model, i.e. F0. The translation of F0

into ecological concepts H0 is only subsequent. In the CM, only the marginals are included
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in H0. Using a particular sequence of degrees is a way to capture the heterogeneity of the
observed network nodes and inject it in the null model. However, the ecological processes
being controlled here are unclear. Many phenomena can affect the node degrees, e.g. species
abundance, competition, phenotype, preferential attachment, etc. In fact, these phenomena
might also affect the networks in other ways. Therefore, the null model partially nullifies the
effect of these phenomena, but only beyond their effect on marginals. The same interrogation
subsists for all the constraints that are not the direct product of an ecological process.

The second sensible caveat of this approach lies in the nature of the simulated networks.
The null model simulates data from the distribution F0. Therefore, each simulation should be
a replicate of the experiment under H0. Ecologically, the simulated networks should represent
independent observations of an ecosystem in the same conditions. Putting such hard constraints
drastically reduces the support of F and F0, so the subset of networks satisfying the marginal
constraint might be very small. For some configurations, the observed network is the unique
network that satisfies them, e.g. for unipartite networks, all the networks satisfying the star
pattern, where 1 node have degree n − 1 and n − 1 nodes have degree 1, are the same up to
node permutations. This is highly unrealistic since networks are observations of some particular
ecosystems, so if we observe an ecosystem several times, it is highly probable that the associated
networks have different row and column sums. For example, sampling effort has a strong effect
on them. Most often, an observed network is only an incomplete sample of the full set of
interactions. In this regard, using the exact sequence of marginals in the generated networks
introduces a bias because it does not reflect the uncertainty due to this sampling.

Finally, a last point overlooked by the null model studies is that the distribution of the
network simulated by procedure-based models is not so obvious. Since the distribution of net-
works is untractable, there is sometimes a gap between what the ecologist expects to simulate
and what is actually simulated. In fact, the algorithm used by Connor and Simberloff (1979)
to simulate under the CM is biased and F0 is not a uniform distribution on its constrained
marginals support. With the current state of the art algorithms, it is now possible to sample
correctly from the CM but this problem has been neglected for a long time. Even so, the reason
why one wants a uniform distribution is unclear. Similar to the CM, one might be tempted
to use some algorithm to generate random networks with a particular property. However, the
null distribution is biased for other properties that were not accounted for. For example, the
Barabasi-Albert model can be used to generate scale-free networks, i.e. networks with a power
law degree distribution. However, there exists many other models that can generate scale-free
networks. It has been shown that the networks generated by different models may not present
the same structural properties, despite having the same power law degree distribution (Grisi-
Filho et al., 2013; Tsiotas, 2019). Therefore any of these models generates scale-free networks,
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but with a different distribution, i.e. they are associated with different null hypotheses H0. It
is uncertain how one interprets these differences, since the simple constraints are the same, but
the complex distributions are different.

It is often not obvious to identify the null hypothesis H0 for a constraint-based null model,
but there are in fact cases where H0 can be directly clearly defined, and the null model is derived
from H0 instead of the opposite. For an ecological question, captured by a null hypothesis H0, it
might be possible to find a relevant null model to test exactly this hypothesis. Many variations
of the CM have been employed later with relaxed constraints, partially fixing some limitations
of the CM. Gilpin and Diamond (1982) use a network model where the individual probability of
interactions depend on row and column parameters, defining "expected" degrees instead of fixed
degrees. Their model would be the bipartite Chung-Lu model described earlier. Instead of fixing
hard constraints, this model allows some variability on the degrees by only fixing constraints
on the moments of the node degrees in F and F0, meaning that its support of is not restricted
anymore (except for the number of nodes). Bascompte et al. (2003) used two null models, the
bipartite version of the ER and a model where the interaction probability between two nodes is
proportional to the average of the observed degrees of these nodes to investigate the nestedness
property of mutualistic networks. Vázquez and Aizen (2004) used a model where the interaction
probability between two nodes is proportional to both node degrees, a variation of the Chung-
Lu model, to highlight the asymmetric specialization in plant-pollinator networks, which is a
notion similar to nestedness. These models soften the constraints but their interpretation is still
difficult. Dormann et al. (2009) generated "artificial" networks by sampling the node degrees
in a particular distribution, then used a version of the configuration model but for weighted
networks. We can argue that these approaches make a step forward in the right direction. The
introduction of another source of variability helps better underline the fact that the simulated
networks are replicates of an actual experiment.

Another type of null models

One way to control the ecological hypotheses included (or excluded) in H0 is to use gener-
ative network models, based on ecological processes. With this approach, H0 is first defined in
ecological terms. The set of ecological processes assumed to affect the network and the ones
that are being tested are identified. Because the underlying processes generating the network
are directly modeled, these models are likelihood-based. The distribution F from which the
observed network is drawn and the null distribution F0 are defined as follows :

● F is unknown but assumed to belong to some family of models so that all the ecological
mechanisms that need to be controlled are included,
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● F0 belongs to the same family but is obtained by some "restriction" (e.g. a particular
combination of parameters) nullifying the processes that are excluded in H0 (e.g. setting
some parameters to 0).

Such an approach would solve all the issues previously discussed. The main limitation is the
difficulty to find a suitable model and decide which processes to include (Wilber et al., 2017).
Nevertheless, the use of such models is becoming increasingly common in ecology, beyond the
null model approach. Rankin et al. (2016) used ERGMs as null models for the study of animal
social networks. de Manincor et al. (2020b) used latent block models (LBM), the bipartite
version of the SBM, to study plant-pollinator networks along a latitudinal gradient. Wells and
O’Hara (2013) goes beyond the species-level and also modeled the processes at the individual-
level. Process-based models also allow to make predictions, notably with the use of covariates
(Bartomeus, 2013; Valdovinos, 2019).

1.4. Exchangeable random network models

In the previous sections, I have outlined the context in which the contributions of this thesis
are inserted. I have reviewed a few models used in network analysis and one of their main use
in ecological network analysis, as null models. As we have seen, the null model approach suffers
from some limitations. My objective is to define a novel framework to study ecological networks,
overcoming these limitations. The cornerstone of my framework is exchangeable random graph
models. The sources of heterogeneity and variability introduced by random graph models are
quintessential to derive statistical guarantees in network analysis. We have seen that likelihood-
based models partially solve the limitations of the null model approach. My framework makes
use of likelihood-based network models which are easily parameterized and with an additional
assumption: node exchangeability. This assumption seems reasonable for ecological interaction
networks and allows to obtain convenient mathematical properties on these models. I give the
mathematical definition of exchangeability and how it may apply to network data. We discuss its
ecological interpretations. Finally, I introduce some notions for exchangeable network models,
which will be the class of models used in my framework.

1.4.1. Mathematical definition of exchangeability

Exchangeable sequences

Exchangeability is a general probabilistic concept under which a sequence of random variables
is invariant under permutations. Denote Sn the group of permutations of order n (only changing
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the first n integers) and S∞ = ⋃∞n=1 Sn the group of finite permutations over N.

Definition 1.4.1. An infinite sequence of random variables X = (X1,X2, ...) is exchangeable if
and only if for all permutation σ ∈ S∞,

(Xσ(1),Xσ(2), ...)
D
= X.

We observe that exchangeability is a probabilistic symmetry weaker than the i.i.d. assump-
tion. If (X1,X2, ...) is exchangeable, then all the Xi, for i ≥ 1 are identically distributed.
However, they are not necessarily independent. In fact, the concept of exchangeability for in-
finite sequences is closely related to the concept of "i.i.d.-ness". These two concepts are linked
by de Finetti’s theorem, which is often put into words by the following sentence "An infinite
exchangeable X is a mixture of i.i.d. sequences.". Here is a more formal version of this theorem.

Theorem 1.4.2. An infinite sequence X = (X1,X2, ...) with values in a measurable set (E,E)
is exchangeable if and only if there exists a probability measure µ on (E,E) such that for any
N ∈ N , for all A = (A1, ...,AN) ∈ E

N ,

P((X1, ...,XN) ∈ A) = ∫Π(E)
π(A1)...π(AN)µ(dπ),

where Π(E) is the set of probability measures on (E,E).

This version is consistent with the above quote: it says that if X is an infinite exchangeable
sequence, then X is i.i.d. conditionally to some σ-field F∞. F∞ is generated by latent variables
that are not measurable by any Xi, i ≥ 1. Actually, this σ-field can be shown to be the tail-field
F∞ = ⋂∞n=1 σ(Xn,Xn+1, ...). Therefore, a more sophisticated version of this result, appearing in
Kallenberg (2005), can be stated under the form of a representation theorem.

Theorem 1.4.3. X = (X1,X2, ...) is exchangeable if and only if there exists a function f ∶

[0,1]2 → E and α and (ξi)i≥1 i.i.d. random variables with distribution U[0,1] such that for all
i ≥ 1,

Xi
a.s.
= f(α, ξi).

This theorem can be powerful at it gives a representation of infinite exchangeable sequences
with i.i.d. variables. However, from a practical point of view, we usually only observe a finite
sequence of random variables. The definition of exchangeability is slightly different for finite
sequences.

Definition 1.4.4. An finite sequence of random variables (X1, ...,Xn) is exchangeable if and
only if for all permutation σ ∈ Sn,

(Xσ(1), ...,Xσ(n))
D
= (X1, ...,Xn).
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The exchangeability of a finite sequence is a weaker property than the exchangeability of an
infinite sequence. Indeed, not all finite exchangeable sequence are said to be infinitely extendible,
i.e. they can not always be written as the first elements of an infinite exchangeable sequence. For
example, consider that (X1, ...,Xn) is the result of a random draw from a pool of N ≥ n elements
without replacement. (X1, ...,Xn) is indeed a finite exchangeable sequence, but we explain why
(X1, ...,Xn) is not infinitely extendible. Drawing all N elements from the pool, the sequence
(X ′1, ...,X

′
N) is such that (X1, ...,XN)

D
= (X ′1, ...,X

′
N). Therefore, we say that (X1, ...,Xn) is N -

extendible. However, we cannot find an infinite exchangeable sequence X ′′ = (X ′′1 ,X ′′2 , ...) such
that (X1, ...,Xn)

D
= (X ′′1 , ...,X

′′
n). As a consequence, (X1, ...,Xn) is not infinitely extendible. In-

finite extendibility is the necessary condition for finite exchangeable sequences to be represented
with i.i.d. variables via the de Finetti’s theorem (Konstantopoulos and Yuan, 2019; Mai, 2020).
In later sections, for finite sequences, we will refer to infinite exchangeability, or more simply
exchangeability, when they are exchangeable and infinitely extendible. We will explicitly write
finite exchangeability when the sequences are not infinitely extendible.

Exchangeable arrays

Arrays of random variables can describe more complex data, such as network data or re-
lationship between more than two entities. Let X = (Xi)i∈Nk be an infinite array of random
variables indexed by k-tuples i = (i1, i2, ..., ik). Typically, if X is a network adjacency matrix,
then X is a two-dimensional array (k = 2). For this type of more complex data, the notion of
exchangeability is ambiguous. Indeed, there are different ways to apply permutations on the
indices of multidimensional arrays.

The equivalent notion to the unidimensional case is when all the entries of the arrays are
fully exchangeable (Adamczak et al., 2016), i.e. for all permutations σ over Nk, the set of all
k-tuples,

(Xσ(i))i∈Nk
D
= X.

If X is a network adjacency matrix, this property means that the edges of the network are
exchangeable.

Full exchangeability is not always suitable for relational data. In network data, it means
for example that (X12,X13)

D
= (X12,X34). This is sometimes too strong an assumption, as one

might expect the couple (X12,X13) to behave differently due to having one node in common,
as opposed to (X12,X34). Many exchangeable network models often assume that not the edges,
but only the nodes are exchangeable. Node-exchangeability can be translated to two different
mathematical properties : joint and separate exchangeability.

Definition 1.4.5. Let X = (Xi)i∈Nk be a k-dimensional array of random variables.
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● X is jointly exchangeable if for any permutation σ ∈ S∞,

(Xσ(i1)...σ(ik))(i1,...,ik)∈Nk
D
= X,

● X is separately exchangeable if for any set of k permutations (σ1, ..., σk) ∈ Sk
∞,

(Xσ1(i1)...σk(ik))(i1,...,ik)∈Nk
D
= X.

The two properties are remarkably related. A separately exchangeable infinite array is also
jointly exchangeable. Separate exchangeability implements additional symmetries that are not
found in joint exchangeability. Although mathematically close, in practice, there is, however,
only little ambiguity to distinguish the two properties. The type of exchangeability depends on
the allowed permutations on the indices and this is usually known. In a unipartite networks, shuf-
fling the interacting entities with a permutation σ yields the adjacency matrix (Xσ(i)σ(j))i≥1,j≥1.
In a bipartite network adjacency matrix, applying a permutation σ1 to the first set of nodes and
another permutation σ2 to the second set yields the matrix (Xσ1(i)σ(2)(j))i≥1,j≥1. Since the net-
works of interest in my work represent mutualistic interactions, I will mainly consider the latter
case. Because the two indices of the adjacency matrix represent its rows and columns, separate
exchangeability of the matrix can be interpreted as if the rows and the columns of the matrix are
separately exchangeable. For that reason, we will say that the separately exchangeable matrix
is row-column exchangeable (RCE).

Definition 1.4.6. An infinite matrix Y is row-column exchangeable (RCE) if and only if for
any couple of permutations (σ1, σ2) ∈ S2

∞,

(Yσ1(i)σ2(j))i≥1,j≥1
D
= Y.

Infinite exchangeable arrays admit analogous representations as the de Finetti’s theorem. A
similar representation first arose from independent studies of Hoover (1979) and Aldous (1981).
Kallenberg’s colossal work has tidied up this framework and extended the theory to different
types of distributional symmetries, most of which is covered in Kallenberg (2005). For these
reasons, this theory is often referred to as the Aldous-Hoover-Kallenberg (AHK) framework.
Here, we only give the representation theorems for jointly exchangeable matrices and for RCE
matrices.

Theorem 1.4.7 (AHK for jointly exchangeable matrices). X = (Xij)i≥1,j≥1 is jointly exchange-
able if and only if there exists a function f ∶ [0,1]4 → E and α, (ξi)i≥1 and (ζij)i≥1,j≥1 i.i.d.
random variables with distribution U[0,1] such that for all i ≥ 1, j ≥ 1,

Xij
a.s.
= f(α, ξi, ξj , ζij). (1.3)
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Theorem 1.4.8 (AHK for RCE matrices). X = (Xij)i≥1,j≥1 is RCE if and only if there exists
a function f ∶ [0,1]4 → E and α, (ξi)i≥1, (ηj)j≥1 and (ζij)i≥1,j≥1 i.i.d. random variables with
distribution U[0,1] such that for all i ≥ 1, j ≥ 1,

Xij
a.s.
= f(α, ξi, ηj , ζij). (1.4)

Like in the uni-dimensional case, this representation has been given for infinite matrices.
To apply this result to networks of finite size, their finite adjacency matrices must be infinitely
extendible. In this framework, we will consider that an observed adjacency matrix is the sub-
matrix consisting of the leading rows and columns of an infinite RCE matrix. This approach
is common in random network analysis (Orbanz and Roy, 2014; Veitch and Roy, 2015). This
ensures that the observed network is infinitely extendible and can be represented by the Aldous-
Hoover-Kallenberg (AHK) representation.

1.4.2. Ecological implications of exchangeability

Exchangeability introduces probabilistic symmetries in the random graph models which are
useful mathematical properties. One can question whether a strong assumption such as node
exchangeability is relevant for applications. Our goal is to study the organization of ecological
ecosystems, i.e. the general structure of species interaction networks. With this objective in
mind, exchangeability is an acceptable assumption.

From a probabilistic point of view, exchangeability means that the network distribution
remains the same when the nodes are shuffled. Since our questions of interest only revolve
around the general structure of the network, we can consider that two adjacency matrices only
differing by a permutation of the rows or the columns represent the same network. Common
network metrics such as connectance, modularity, nestedness or centrality do not depend on
the order of the nodes. In many ecological studies, exchangeability would be a transparent
assumption.

As a consequence of exchangeability, the labels of the nodes do not play a role in the network
models. Exchangeability means "working without species names". If the property of the network
does not depend on the particular ordered list of species, it should persist when rows and
columns of the adjacency matrix are exchanged. Therefore, this does not matter when studying
the general structure of the networks, but any analysis involving a particular set of species
invalidates the assumption of exchangeability. Also, any network analysis method involving
node correspondence is rendered pointless. However, this does not mean that species names
cannot be used for interpretation of the results because of exchangeability. For example, one
might fit a model with exchangeable latent variables on an observed network and then interpret
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the relative position of some particular species in the latent space. Taxonomy is only omitted
in the network model used for the mathematical analysis of the structure.

Exchangeability means "working without species names" – if the property of the network does
not depend on the particular ordered list of species, it should persist when rows and columns of
the adjacency matrix are exchanged.

In fact, many null model analyses already make an underlying exchangeability assumption.
This applies to most null models shuffling the interactions but keeping node properties, e.g. the
configuration model keeping the exact degrees or the Chung-Lu model keeping the expectation
of the degrees. The goal of these models is to generate networks with a similar structure (for
example, determined by the constraints of the null model) while severing the relation between a
particular observed node and its edges. Some null models are even explicitly exchangeable, for
example Bassetti et al. (2007) or Dormann et al. (2009).

Using exchangeable models, it is possible to jointly study networks independently of the
collection of species involved in each network. This is of great interest in ecology. For instance,
when studying the evolution of networks with respect to some environmental gradient, data
consist in several networks observed under different conditions (geographical location, time,
weather, etc.). Species composition often differ between the networks, which may have different
sizes.

1.4.3. Exchangeable models

Exchangeability in random graph models

For networks, exchangeability can refer to the nodes but also to the edges. From a mathemat-
ical point of view, edge-exchangeability means that the edges can be viewed as an exchangeable
sequence, while node-exchangeability implies that the adjacency matrix is a jointly exchangeable
(or RCE) array. Recent research has been carried on edge-exchangeable models by Cai et al.
(2016), Williamson (2016) and Crane and Dempsey (2018). However, node-exchangeability is an
assumption more fitted to the ecological context. Node-exchangeable models have been studied
for more than two decades and is backed by strong theoretical developments. From now, network
and graph exchangeability refer to node-exchangeability. Among the random graph models pre-
sented in the previous section, some are exchangeable or may only require minor modifications
to be exchangeable.

The Gn,M model is not exchangeable but only finitely exchangeable due to the fact that
the number of edges M is constant even if n grows. The BA and WS are procedure-based
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models that are not even finitely exchangeable per se. Normally, the BA starts with a fixed
network and randomly connected nodes are sequentially added. The probabilities of interaction
of a node depend on which nodes come first. The BA is not exchangeable by design. However,
Bollobás et al. (2007) suggested an exchangeable model reproducing some properties of the BA,
including edge probabilities and degree distribution. The WS starts with a fixed lattice circular
network and sequentially modifies the edges connected to each node, in a particular fixed order.
The WS becomes finitely exchangeable if the order of the modified nodes is randomly and
uniformly chosen, but not exchangeable. The CM can be finitely exchangeable if one consider
that the nodes draw their degree without replacement from the specified degree sequence. If
the node degrees are drawn with replacement, then this is a degree distribution model, which
is exchangeable. Finally, the ERGMs are generally not finitely exchangeable, but all finitely
exchangeable models can be written as ERGMs (Lauritzen et al., 2018).

In constrast, in the Gn,p model, the edges are i.i.d., therefore the nodes are exchangeable.
The infinite extendibility comes from the fact that the Gn,p model is invariant when the number
of nodes n grows, i.e. for two integers n1 < n2, matrices generated by Gn1,p have the same distri-
bution than submatrices of size n2 of matrices generated by Gn2,p networks. The CM variations
using degree or expected degree distributions are also infinitely exchangeable because the node
degrees are i.i.d. Similarly, the latent space models formalized earlier become exchangeable when
the latent variables associated to the nodes are i.i.d. With respect to the AHK representation
theorem of exchangeable arrays, this is not surprising how the "i.i.d.-ness" may form exchange-
able models. A class of latent space models encompassing all the exchangeable models will be
made explicit in the next paragraph.

The graphon

Exchangeable random graphs can be directly linked to dense graph limit theory via an object
called the graphon. This object is a general tool to build and to study exchangeable graph
models. Here, I introduce some notions of dense graph limit theory and, defining the concept
of graphon, I explain how it relates to the limit of exchangeable random graph models and
the AHK representation of exchangeable arrays. For convenience, we consider binary graphs.
The extension to weighted graphs will be done later. The material in this section is essentially
adapted from Lovász and Szegedy (2006).

We need to define a few nations before defining the graphon. Let G = (V (G),E(G)) be a
binary graph. The number of automorphisms Aut(G) of G is the number of permutations on
its vertices which leave the graph unchanged. Let H be another finite graph. The number of
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homomorphisms, i.e. copies, of H in G is given by

Hom(H,G) = 1
∣Aut(H)∣ ∑

i∈Pv(H)(V (G))
∏

(k,ℓ)∈E(H)
A(G)ikiℓ

,

where v(⋅) is the number of vertices of a graph and A(G) is the adjacency matrix of G. If v(G) ≤
v(H), then Hom(H,G) = 0. The homomorphism density t(H,G) is obtained by normalizing
Hom(H,G) as follows

tH(G) =
Hom(H,G)
v(G)v(H)

,

so that tH(G) ∈ [0,1] is the probability of obtaining H when sampling v(H) nodes from V (G)

and returning the induced subgraph. Hom(H,G) (resp. tH(G)) is also sometimes called a
subgraph count (resp. density) or a motif count (resp. density).

Let (Gn)n≥1 be a finite graph sequence. (Gn)n≥1 is said to be dense if the number of edges
e(Gn) ≍ v(Gn)

2. Lovász and Szegedy (2006) proved the following theorem, which is the keystone
of graphon theory, applying to dense graph sequences.

Theorem 1.4.9. Let (Gn)n≥1 be a dense graph sequence. If (Gn)n≥1 converges, i.e. tH(Gn)

converges for all finite graphs H, then there exists a graphon, i.e. a symmetric measurable
function w ∶ [0,1]2 → [0,1], such that

tH(Gn)ÐÐÐ→
n→∞

tH(w) ∶= ∫[0,1]∣v(H)∣
∏

(k,ℓ)∈e(H)
w(xk, xℓ)dx1...dx∣v(H)∣.

There are several takeaways from this theorem. First, graph convergence here means con-
vergence of the subgraph densities. The fact that the (Gn)n≥1 should be dense is essential and
we will see how it to relates to exchangeability later. Second, the graphon is simply a symmetric
measurable function w ∶ [0,1]2 → [0,1] and tH(w) can be defined for all graph H. The expres-
sion tH(w) strongly resembles the formula of the homomorphism density for H in a graph G.
In fact, w seems to play the role of the adjacency matrix A(G) but continuous and rescaled in
a square [0,1]2. This intuition is actually spot on, as we will see the role of w in the graphon
model. The key takeaway from this theorem is that any graph sequence limit can be represented
by a graphon. Next, we extend this notion to random graphs.

Consider the G(n, p) model. For all n, let Gn be one realization of the G(n, p) model. We
may abusively write A(Gn) ∼ G(n, p), for some fixed p ∈]0,1]. Since A(Gn)ij

i.i.d.
∼ B(p), then for

any graph H, we have tH(Gn)
a.s.
ÐÐÐ→
n→∞

p∣e(H)∣. This means that not only the limit of Gn can be
represented by the constant graphon w ≡ p but this is a hint that w ≡ p can also represent the
limit of the sequence of random graph models, here the G(n, p) models.
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More generally, for some graphon w, define the G(n,w) models such that for all n ≥ 1,
A(Gn) ∼ G(n,w) is generated by

ξi
i.i.d.
∼ U[0,1], ∀1 ≤ i ≤ n,

A(Gn)ij ∣ ξi, ξj ∼ B(w(ξi, ξj)), ∀1 ≤ i, j ≤ n.

The G(n,w) is a latent space model where the latent variables (ξi)1≤i≤n are i.i.d. Obviously, this
is a node-exchangeable model. Again, we can show that for any graph H, we have tH(Gn)

a.s.
ÐÐÐ→
n→∞

tH(w). Therefore, w can be considered as the limit of the exchangeable random graph models
G(n,w) (Fig. 1.11). This model is called the W -graph model or the graphon model. Every
W -graph or graphon model can be represented by its limit, which is no other than its own
graphon.

Figure 1.11 – The graphon as the limit of the adjacency matrices of G(n,w) graphs. Left: Three
adjacency matrices of G(n,w) binary graphs for increasing values of n, unique w. Right: The
corresponding graphon w. Figure taken from Orbanz and Roy (2014)

The graphon model bridges the gap between the exchangeable random graph models and
the graph limit theory. Not only is the graphon model is exchangeable but, more interestingly,
the converse is true as well, i.e. exchangeable models can be written as a graphon model, under
an additional assumption. From the AHK representation theorem, if α is constant, then a
jointly exchangeable array can be written as a graphon model. The property implying that α is
constant is called dissociatedness. A jointly exchangeable matrix Y is said to be dissociated if
for all n ≥ 1,

(Yij)1≤i,j≤n is independent of (Yij)i>n,j>n.

Indeed, after ensuring α is constant, setting

f(ξi, ξj , ζij) = 1{ζij ≤ w(ξi, ξj)}

in equation (1.3) gives the graphon model. Therefore, every dissociated exchangeable random
graph model can be represented by a graphon. The graphon is a useful object to study complex
models. Although the graphon might be complex, it is usually described by a unique formula.

Even though I have only introduced the theory for unipartite binary graphs. The theory
has been extended for bipartite graphs (Diaconis and Janson, 2008) and for weighted graphs
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(Lovász and Szegedy, 2010). For bipartite graphs, a "bipartite" graphon can be defined, which
only differs from a classic graphon because it is not required to be symmetric. The graphon
model is written with two families (ξi)1≤i≤m and (ηj)1≤j≤n of i.i.d. variables instead of one and
each conditional edge probability is given by w(ξi, ηj). For weighted graphs, instead of a classic
graphon, a "colored" graphon is considered. More details will be given in Section 1.6.1. Because
all the types of dissociated exchangeable graphs models can be represented by a graphon, this
unique object can be used to study these models without loss of generality.

Now, I have given a general introduction to the family of exchangeable models. Next, I will
present the second major object used in my framework: U -statistics.

1.5. U-statistics

My framework aims to perform statistical inference on random graph models. Since I have
not tackled the subject of inference yet, it is maybe still unclear where the exchangeability as-
sumption might be helpful. The class of estimators used to perform statistical inference on these
models in my framework is the class of the U -statistics for network data. U -statistics have a
long history in the literature, especially for independent and identically distributed data. In this
chapter, I provide a gentle introduction to U -statistics, mostly focusing on i.i.d. data. I put
emphasis on limit theorems and a few techniques and tools that are commonly used to obtain
them. I keep in mind that I am interested in extending U -statistics to dependent data, espe-
cially exchangeable network data, but in this section, I only give some hints foreshadowing how
exchangeability will come into play in my framework. This section is built upon a compilation
of elements from the textbooks of Hall and Heyde (1980), Lee (1990), Korolyuk and Borovskich
(1993) and Van der Vaart (2000). Proofs for most results can be found in at least one of these
references.

1.5.1. The basics

Let P be a family of probability distribution functions on a set E. Let (X1, ...,Xn) be a
sequence of independent and identically distributed (i.i.d.) random variables with distribution
function P ∈ P. Let h0 ∶ Ek → R be a function of k variables, k ≤ n, and h ∶ Ek → R be its
symmetrized version, i.e. h is defined following

h(x1, ..., xk) =
1
k! ∑π∈Sk

h0
(xπ(1), ..., xπ(k)),
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where Sk is the symmetric group of order k. The U -statistic on (X1, ...,Xn) with kernel h is
defined as

Uh
n(X1, ...,Xn) = (

n

k
)
−1

∑
i∈Pk(JnK)

h(Xi),

where i ∶= {i1, ..., ik}, and by symmetry of h, we can write h(Xi) ∶= h(Xi1 ,Xi2 , ...,Xik
) because

it does not depend on the order of the elements i. We assume that E[h(Xi)
2] < ∞. We will

solely focus on the case E = R, unless when explicitly specified. When there is no ambiguity, we
will denote Un ∶= U

h
n(X1, ...,Xn).

Let θ(P ) be a real-valued functional defined on P such that EP [h
0(X1, ...,Xk)] = θ(P ). It

is straightforward that EP [U
h
n ] = θ(P ). Halmos (1946) proved that Uh

n is the unique symmetric
function of n variables that is an unbiased estimator of θ(P ) and in addition, it is the unbiased
estimator of θ(P ) with the least variance. When there is no ambiguity, we will denote θ ∶= θ(P ).

If k = 1, then
Un =

1
n
∑

1≤i≤n
h(Xi).

Therefore, U -statistics are in fact the generalization of the empirical mean to functions of several
variables. Numerous commonly used estimators belong to the class of U -statistics. For example,
the unbiased empirical variance estimator of the sample (X1, ...,Xn) is given by the U -statistic
with kernel h(x1, x2) = (x1 −x2)

2/2. Other centered moments E[(X −E[X])p] can be estimated
by the U -statistic with h0(x1, ..., xp) = (−1)p∏p

i=1 xi +∑
p
ℓ=1(−1)p−ℓ(

p
ℓ
)xℓ−1

1 ∏
p−k+1
i=1 xi (symmetrize

to obtain h).

Many classic statistics can also be expressed as U -statistics. For instance, Wilcoxon’s one-
sample statistic is yielded with the kernel h(x1, x2) = 1(x1 + x2 ≥ 0). An example where E = R2

is Kendall’s τ which is Un((X1, Y1), ..., (Xn, Yn)) with the kernel h((x1, y1), (x2, y2)) = 1((y2 −

y1)(x2 − x1) ≥ 0) − 1.

The key strength of the theory of U -statistics is how it provides a unified approach to the
properties of all these different estimators. For example, the development of the variance of a
U -statistic is V[Un] = (

n
k
)
−2
∑i∈Pk(JnK)∑i′∈Pk(JnK)Cov(h(Xi), h(Xi′)). It follows that it can be

expressed for any kernel h with the following formula.

Proposition 1.5.1. The variance of a U -statistic with kernel h is

V[Un] = (
n

k
)
−1 k

∑
c=1
(
k

c
)(
n − k

k − c
)vc,

where for all 1 ≤ c ≤ k, vc = Cov(h(Xi), h(Xi′)) where i and i′ have c common elements.

This expression of the variance of Un is remarkable. Not only it appears that V[Un] consists
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in a combination of only k covariance terms, but it also gives its asymptotic behavior:

V[Un] =
k

∑
c=1

V (c)

nc
+ o(

1
nk
) , (1.5)

where the V (c) are linear combinations of the terms (vc′)1≤c′≤c. For c = 1, we have V (1) = k2v1.
This expansion foreshadows the Central Limit Theorem (CLT) for U -statistics and their behavior
in the degenerate case, i.e. when

√
n(Un − θ)

P
ÐÐÐ→
n→∞

0. It is apparent this case occurs when

V (1) = 0. Before commenting further, let introduce the definition of a degenerate U -statistic.

Definition 1.5.2. Let 2 ≤ d ≤ k. We say that the U -statistic Un with kernel h is degenerate of
order d − 1 when 0 = v1 = ... = vd−1 < vd, where for all 1 ≤ c ≤ k, vc = Cov(h(Xi), h(Xi′)) where i
and i′ have c common elements.

We now apply this relation to the above expression of variance. We see that a non-degenerate
U -statistic has v1 > 0. In this case, V[

√
nUn] ÐÐÐ→

n→∞
k2v1 > 0. This situation leads to the

convergence of
√
n(Un − θ) towards a centered Gaussian distribution with variance k2v1, as we

will later state the CLT for non-degenerate U -statistic. Else, if the U -statistic is degenerate of
some order d − 1, then we see that V (1) = ... = V (d−1) = 0 and V (d) ≠ 0. In that case, we would
have V[n

c
2Un] ÐÐÐ→

n→∞
0 for all 1 ≤ c ≤ d − 1, so we see that

√
n(Un − θ)

P
ÐÐÐ→
n→∞

0. On the other

hand, we have V[n
d
2Un] ÐÐÐ→

n→∞
V (d). This gives a hint about what happens in the degenerate

case, where the right normalization for a non-trivial limit distribution is n
d
2 rather than

√
n.

We will discuss the degenerate case in a later section. Before investigating the asymptotics of
U -statistics, we introduce two useful tools: the Hoeffding decomposition and martingales.

1.5.2. Hoeffding decomposition

The Hoeffding decomposition has been formalized for the first time by Hoeffding (1961),
even though the leading terms of the decomposition were already used by Hoeffding (1948). The
concept of this decomposition is to use orthogonal projections to break down the U -statistics
into orthogonal components. These components are U -statistics themselves but they display
different asymptotic behaviors and can be studied separately due to their orthogonality.

For 1 ≤ c ≤ k, define the function ψc as

ψc
∶ (x1, ..., xc)z→ E[h(x1, ..., xc,Xc+1, ...,Xk)].

By symmetry of h, for some set i ∈ Pc(JnK), we can denote ψc(Xi) ∶= ψ
c(Xi1 , ...,Xic) since the

order of the elements of i does not matter, by symmetry. Set p0 = θ = E[h(X1, ...,Xk)] and
define recursively

pc
(Xi) = ψ

c
(Xi) −

c−1
∑
c′=0

∑
i′∈Pc′(i)

pc′
(Xi′). (1.6)
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for all subsets i ∈ Pc(JnK), for all 1 ≤ c ≤ k. Then h(Xi1 , ...,Xik
) can be written

h(Xi) = ∑
0≤c≤k

∑
i′∈Pc(i)

pc
(Xi′). (1.7)

From a geometric perspective, this decomposition of h(Xi) is a decomposition on orthogonal
subspaces. For all i ⊆ JnK, denote L2(i) the set of all square-integrable random variables of the
form f(Xi), equipped with the scalar product ⟨f, g⟩ = E[f(Xi)g(Xi)]. Let L∗2(i) ⊂ L2(i) the
subspace defined as

L∗2(i) = {A ∈ L2(i) ∶ E[A∣Xi′] = 0,∀i′ ⊂ i}.

These spaces have the following properties :

1. Let i1 and i2 two disjoint subsets of JnK, then L∗2(i1) ⊥ L∗2(i2).

2. Let i ⊆ JnK, then

L2(i) =
⊥
⊕
i′⊆i

L∗2(i′).

Therefore, for a given i, the (L∗2(i′))i′⊆i form a decomposition of L2(i) in orthogonal subspaces.
Now, note that for all i′ ⊂ JnK, we have pc(Xi′) ∈ L

∗
2(i′). So if i′ ⊆ i, then pc(Xi′) is the

projection of h(Xi) on the space L∗2(i′). Therefore, the decomposition (1.7) is the decomposition
of h(Xi) ∈ L2(i) on these orthogonal subspaces.

Finally, notice that the U -statistic Un can be written as

Un = θ +
k

∑
c=1
(
k

c
)P c

n,

where for 1 ≤ c ≤ k, P c
n = (

n
c
)
−1
∑i∈Pc(JnK) p

c(Xi). This decomposition is useful as the U -statistics
P c

n hold many interesting properties. First, all the quantities pc(Xi) are orthogonal except those
arising from the permutations of a given set i, which are identical quantities. This ensures
that, like the kernel decomposition, the decomposition of U -statistics is also on orthogonal
subspaces. Define, for 0 ≤ c ≤ k, the orthogonal spaces Lc

2(JnK) =⊕⊥i∈Pc(JnK)L
∗
2(i), then we have

Un ∈ L2(JnK) = ⊕k
c=0L

c
2(JnK). For 1 ≤ c ≤ k, P c

n ∈ L
c
2(JnK) and θ ∈ L0

2(JnK) so they are the
orthogonal projections of Un on Lc

2(JnK). Second, the orthogonality properties also ensures that
the U -statistics P c

n are degenerate of order c − 1. Therefore, the variance of each P c
n can be

reduced to only one O(n−c) term (as vc′ = 0, for 1 ≤ c′ < c in Proposition 1.5.1).

Proposition 1.5.3. 1. For 1 ≤ c1 ≠ c2 ≤ k, we have Cov(P c1
n , P c2

n ) = 0,

2. For 1 ≤ c ≤ k, we have V[P c
n] = (

n
c
)
−1V[pc(XJcK)].

As a consequence, we can derive an alternative expression for the variance of Un. Very
interestingly, it is now apparent that from the expression of their respective variances, the P c

n

are OP (n
c
2 ), 1 ≤ c ≤ k hence their different asymptotic behaviors.
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Corollary 1.5.4. 1. The variance of Un can be written V[Un] = ∑
k
c=1 (

k
c
)

2
(

n
c
)
−1V[pc(XJcK)],

2. For 1 ≤ c ≤ k, 0 ≤ c′ ≤ c − 1, we have V[n
c′

2 P c
n]ÐÐÐ→n→∞

0.

We see that the first part of the corollary gives a different variance decomposition than
Proposition 1.5.1, but it still (unsurprisingly) implies (1.5). The leading terms of this decompo-
sition has been used by Hoeffding (1948) to prove the asymptotic normality of

√
n(Un −θ). The

decomposition has also been notably useful to study degenerate U -statistics (Bretagnolle, 1983;
Arcones and Gine, 1992).

1.5.3. Martingale properties

Background

Let (X1, ...,Xn) be i.i.d. random variables with mean E[X1] = 0 and X̄n =
1
n ∑

n
i=1Xi. It is

known that four classical limit theorems apply to the sequence (X̄n)n≥1: the weak and strong
laws of large numbers (WLLN, SLLN), the Central Limit Theorem (CLT) and the law of iterated
logarithm (LIL). Martingale theory has been motivated to generalize theory for sums of i.i.d.
variables to a larger class of stochastic processes that are "constant in average".

Definition 1.5.5. Let F = (Fn)n≥1 be a filtration, i.e. a sequence of σ-fields F = (Fn)n≥1 such
that for all n ≥ 1, Fn ⊆ Fn+1, and M = (Mn)n≥1 a sequence of integrable random variables
adapted to F . (Mn,Fn)n≥1 is a martingale if and only if for all n ≥ 1, E[Mn+1 ∣ Fn] =Mn.

See how (nX̄n)n≥1 can also be written as a martingale with respect to the filtration (Fn)n≥1

where Fn = σ(X1, ...,Xn). The WLLN for i.i.d. variables can be considered as a consequence
of martingale inequalities (except if it is not required that E[X2

1 ] < ∞, but in this case, the
independence criteria is not necessary and the proof can be extended to martingales). The
SLLN for i.i.d. variables is a consequence of the martingale convergence theorem (which is why
some authors refer to the latter as the martingale SLLN) and there exists a martingale version
of the CLT and the LIL.

In the case of U -statistics, we are most interested in backward martingales.

Definition 1.5.6. Let F = (Fn)n≥1 be a decreasing filtration, i.e. a sequence of σ-fields F =
(Fn)n≥1, i.e. such that for all n ≥ 1, Fn+1 ⊆ Fn, and M = (Mn)n≥1 a sequence of integrable
random variables adapted to F . (Mn,Fn)n≥1 is a backward martingale if and only if for all
n ≥ 1, E[Mn ∣ Fn+1] =Mn+1.
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Backward martingales can be considered as martingales in reversed time, e.g. (Mn,Fn)1≤n≤N

is a martingale if and only if (MN−n+1,FN−n+1)1≤n≤N is a backward martingale. For this rea-
son, many martingale limit theorems admit a backward martingale version. These versions also
generalize the corresponding limit theorems for i.i.d. variables as (X̄n)n≥1 can be written as a
backward martingale, with respect to the decreasing filtration defined by Fn = σ(X̄n, X̄n+1, ...).
Actually, the U -statistics Un have a "forward" martingale structure since the Hoeffding projec-
tions ((nc)P

c
n)n≥1 are "forward" martingales, but more interestingly, the (Un)n≥1 themselves are

backward martingales. For this reason, it is more direct to investigate Un under the light of
backward martingales. We will mainly be interested in the backward martingale convergence
theorem and the backward martingale CLT.

Theorem 1.5.7. Let (Mn,Fn)n≥1 be a backward martingale. Then, (Mn)n≥1 is uniformly in-
tegrable, and, denoting M∞ = E[M1 ∣ F∞] where F∞ = ⋂∞n=1Fn, we have

Mn
a.s.,L1
ÐÐÐ→

n→∞
M∞.

Furthermore, if (Mn)n≥1 is square-integrable, then Mn
L2
ÐÐÐ→
n→∞

M∞.

Theorem 1.5.8 (Eagleson and Weber, 1978). Let (Mn,Fn)n≥1 be a square-integrable reverse
martingale, V a F-measurable, a.s. finite, positive random variable. Denote M∞ ∶= E[M1 ∣ F∞]

where F∞ ∶= ⋂∞n=1Fn. Set Znk ∶=
√
n(Mk −Mk+1). If:

1. ∑∞k=n E[Z2
nk ∣ Fk+1]

P
ÐÐÐ→
n→∞

V ,

2. for all ϵ > 0, ∑∞k=n E[Z2
nk1{∣Znk ∣>ϵ} ∣ Fk+1]

P
ÐÐÐ→
n→∞

0,

then ∑∞k=nZnk =
√
n(Mn −M∞)

D
ÐÐÐ→
n→∞

W , where W is a random variable with characteristic
function ϕ(t) = E[exp(−1

2 t
2V )].

The a.s. limit of Mn is M∞ = E[M1 ∣ F∞], a F∞-measurable random variable. In the CLT,
the limiting distribution of

√
n(Mn −M∞) is a mixture of centered Gaussians with variances

determined by the values taken by V , also a F∞-measurable random variable. Both the SLLN
and the CLT for sums of i.i.d. random variables are straightforward corollaries of these theorems
where M∞ and V are constants. Indeed, when Mn = X̄n and Fn = σ(X̄n, X̄n+1, ...), then F∞ is
trivial. It can be hinted how dropping the independence assumption affects the results.

Example 1. Let (Yn)n≥1 be a sequence of random variables such that Yi ∶= Xi + Z, where the
(Xn)n≥1 are i.i.d. random variables and Z is an integrable random variable. Then the (Yn)n≥1 are
not independent, but (Ȳn)n≥1 is still a backward martingale with respect to Gn ∶= σ(Ȳn, Ȳn+1, ...) =

σ(X̄n + Z, X̄n+1 + Z, ...). Here, G∞ = σ(Z), so in some way, G∞ contains information on the
variability of the (Yn)n≥1 that cannot be averaged out.



In
tr

od
uc

ti
on

1.5. U -statistics 43

Link with U-statistics

Here we showcase the martingale structure of Un.

Proposition 1.5.9. Let (Fn)n≥1 be the filtration defined by Fn = σ(X1, ...,Xn). If
E[∣h(X1, ...,Xk)∣] <∞, then for all 1 ≤ c ≤ k, ((nc)P

c
n,Fn)n≥1 is a martingale.

Proposition 1.5.9 applies to the U -statistics P c
n. Earlier, it has been mentioned that in

the case of i.i.d. variables with mean 0, (nX̄n)n≥1 is a martingale. This result is included in
Proposition 1.5.9. If k = 1 and h is the identity, then θ = 0 so that (nX̄n)n≥1 = (n(Un − θ))n≥1 =

(nP 1
n)n≥1 is a martingale. One would be tempted to assume that ((nk)Un)n≥1 is also a martingale.

However, this is wrong in general as n(Un −θ) is a linear combination of the ((nc)P
c
n)1≤c≤k where

the coefficients depend on n. For this reason, the application of (forward) martingale results to
U -statistics require some additional work. On the other hand, we have the following property
directly on Un.

Proposition 1.5.10. Let (Fn)n≥1 be the decreasing filtration defined by Fn = σ(Un, Un+1, ...).
If E[∣h(X1, ...,Xk)∣] <∞, then for all 1 ≤ c ≤ k, (Un,Fn)n≥1 is a backward martingale.

The backward martingale structure of Un is more straightforward. Hence, backward martin-
gale inequalities and limit theorems can extend to U -statistics of i.i.d. variables.

1.5.4. Asymptotic behavior of U-statistics

We have mentioned the three classic limit theorems for sums of i.i.d. random variables
(WLLN/SLLN, CLT, LIL). Obviously, for U -statistics with degree k = 1, all these asymp-
totic results apply. In general, we have to exploit the Hoeffding decomposition and/or the
forward/backward martingale structure of the U -statistics to obtain an equivalent for each. In
the non-degenerate cases, U -statistics hold similar properties to sums of i.i.d. variables due to
the dominant term P 1

n of the Hoeffding decomposition being a sum of i.i.d. variable itself. If
Un is degenerate of order d − 1, 2 ≤ d ≤ k, the dominant term is P d

n , which is not a sum of i.i.d.
variables but still a forward and backward martingale.

The SLLN for U -statistics of i.i.d. variables is given by the following theorem.

Theorem 1.5.11 (Hoeffding, 1961). If E[∣h(X1, ...,Xk)∣] <∞, then Un − θ
a.s.,L1
ÐÐÐ→

n→∞
0.

Although Hoeffding (1961) proved this result using both the Hoeffding decomposition and
the "forward" martingale structure of the U -statistic, a more concise proof would be to simply
apply Theorem 1.5.7 using the backward martingale structure of Un (Berk, 1966).
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This SLLN obviously implies the WLLN for U -statistics. The next theorem is the CLT for
non-degenerate U -statistics.

Theorem 1.5.12 (Hoeffding, 1948). If E[h(X1, ...,Xk)
2] <∞ and v1 > 0, then

√
n(Un−θ)

D
ÐÐÐ→
n→∞

N (0, k2v1).

Again, several strategies of proof exist. Hoeffding (1948) used the Hoeffding decomposition
and one could have applied the backward martingale CLT. As a remark, note that if Un is
degenerate, then by extension, the result would be still valid with v1 = 0, but it simply yields
√
n(Un−θ)

P
ÐÐÐ→
n→∞

0. The distribution of n
d
2 (Un−θ) when Un is degenerate of order d−1, 2 ≤ d ≤ k,

has been investigated by Rubin and Vitale (1980).

Theorem 1.5.13 (Rubin and Vitale, 1980). If E[h(X1, ...,Xk)
2] <∞ and 0 = v1 = ... = vd−1 < vd

for some 2 ≤ d ≤ k, then n
d
2 (Un−θ) and n

d
2 (

k
d
)P d

n both converge in distribution to the same limit.
This limit is

(
k

d
) ∑

j∈Nd

⟨pd, ej1 ⊗ ...⊗ ejd
⟩
∞
∏
ℓ=1
Hκℓ(j)(Wℓ),

where
● (ei)i≥1 is an orthonormal basis of the Hilbert space L2({1}),
● ej1 ⊗ ...⊗ ejd

is the function defined by (ej1 ⊗ ...⊗ ejd
)(x1, ..., xd) = ej1(x1)...ejd

(xd),
● pd is the kernel of P d

n , i.e. the function defined by equation (1.6),
● (Wi)i≥1 are independent standard normal variables,
● Hu is the u-th Hermite polynomial, for u ≥ 0,
● κℓ(j) is the number of times ℓ appears as an element in the d-tuple j.

Albeit the expression of the limit is complex and does not always admit a close form, this
result is still of great interest for degenerate U -statistics. For degenerate U -statistics of order
1, it has been known that the limit distribution is that of an infinite sum of independent χ2

distributions ∑∞ℓ=1 λℓ(W
2
ℓ − 1), where the λℓ are constants (Gregory, 1977; Eagleson, 1979).

Theorem 1.5.13 extends to degenerate U -statistics of order d − 1 > 1, telling us that the limit
distribution is an (infinite) linear combination of polynomials of the Wℓ of degree d, i.e. it is an
(infinite) sum of monomials ∏d

c=1W
ac
c where ac ∈ {0,1, ..., d} for all 1 ≤ c ≤ d and ∑d

c=1 ac ≤ d.

Not always would one need the expression of this limit, as it is possible to retrieve its cumu-
lative distribution function by bootstrap. Although the bootstrap of Un when Un is degenerate
is bound to fail (Bretagnolle, 1983), Theorem 1.5.13 states that the target distribution is also
the limit distribution of n

d
2 (

k
d
)P d

n . This opens up the possibility to bootstrap Un −∑
d−1
c=1 (

k
c
)P c

n

which solves the issue (see Section 5.2.1).

Compared to the LLN and the CLT, the LIL has more limited applications in statistics. A
LIL for U -statistics can still be written.
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Theorem 1.5.14. If E[h(X1, ...,Xk)
2] <∞ and v1 > 0, then

lim sup
n→∞

n(Un − θ)
√
k2v1n log logn

a.s.
=
√

2. (1.8)

This result is obtained applying the classic LIL to the dominant term of the Hoeffding
decomposition. A similar result for degenerate U -statistics can be deduced from Dehling et al.
(1984). The rate of convergence is n

(n log log n)
d
2

where d − 1 is the order of degeneracy.

1.5.5. Dependent data

The results enunciated in the previous section are now well known, but they do not eas-
ily transpose to dependent data. In fact, the dependency structure of the (X1,X2, ...) deter-
mines that of the associated U -statistics. Literature on the asymptotics of U -statistics are
closely related to sums of dependent data. Classical literature on U -statistics assumes the data
(X1,X2, ...) to be i.i.d. variables. In this case, the h(Xi1 , ...,Xik

) are dependent. Denote
Yi1...ik

= h(Xi1 , ...,Xik
). Then we easily see that Y = (Yi)i∈Nk is in fact jointly exchangeable, so

that a U -statistic of i.i.d. variables is a sum of jointly exchangeable variables.

We have described two tools to prove limit theorems of U -statistics of i.i.d. variables: mar-
tingales and the Hoeffding decomposition. Most developments around U -statistics of dependent
data were built upon these two tools. Even if the (X1,X2, ...) are not independent, one could
hope to obtain similar results if Un retains its martingale structure or if an Hoeffding-type
decomposition can be derived. For example, investigating U -statistics of ergodic stationary
processes, Yoshihara (1976) and Denker and Keller (1983) used the Hoeffding decomposition
alongside with coupling techniques to derive a series of CLTs with different conditions on the
sequences and Aaronson et al. (1996) discussed the conditions for a LLN.

U -statistics of jointly exchangeable arrays are still sums of jointly exchangeable variables, so
it is not surprising that results for U -statistics of i.i.d. data translate well to them. Effectively,
Silverman (1976) proved a limit theorem for jointly exchangeable arrays using Hoeffding-type
arguments and Eagleson and Weber (1978) revisited it with martingales. Many other asymptotic
results for U -statistics of exchangeable sequences were derived afterwards, such as a Berry-Esseen
bound (van Zwet, 1984) and a law of iterated logarithm (Scott and Huggins, 1985). Eagleson
and Weber (1978) also proved a SLLN for these sums. More generally, the SLLN of Kallenberg
(1999) applies to sums of π-exchangeable variables, i.e. arrays X indexed by a k-tuples such
that there exists a partition π of JkK and a vector of permutations (σI)I∈π such that

X
D
= (XσI1(i1)...σIk

(ik))i∈Nk
,
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where for ℓ ∈ JkK, Iℓ denotes the subset I ∈ π containing ℓ. This family of variables includes both
U -statistics of jointly exchangeable arrays and of separately exchangeable arrays. The case of
finite exchangeability has also been considered, notably for the problem of sampling in a finite
population, for example by Nandi and Sen (1963) and Zhao and Chen (1990).

Concurrently, many results have been obtained using Stein’s method (Stein, 1972). Stein’s
method uses the properties of the solutions of a differential equation (Stein’s equation) to bound
the approximation error of a random variable by a standard normal random variable, most often
in Wasserstein distance. For a sequence of random variables, the goal is to find a bound that
decreases asymptotically to 0, which guarantees the convergence in distribution to a standard
normal variable. Stein’s method comes up with the advantage that it automatically provides a
Berry-Esseen bound, informing on the rate of convergence to the limit distribution. In general,
one makes use of the structure of the investigated random variable to find this bound, so this
is very problem-dependent and some non trivial work is required to adapt Stein’s method. In
relation to the U -statistics considered in this thesis, Austern and Orbanz (2022) applied Stein’s
method to prove the asymptotic normality of U -statistics of exchangeable variables, therefore
obtaining a Berry-Esseen bound. Other examples of application to U -statistics of independent
or dependent variables can be found in the literature (Barbour and Eagleson, 1985; Maesono,
1991; Chatterjee, 2008; Reinert and Röllin, 2010; Reitzner and Schulte, 2013).

1.6. Contributions

In the first sections, I have presented the context in which network analysis intervenes in
ecological studies. The contributions of this thesis exclusively focus on the development of a
new methodology for network analysis in this particular context. In the previous sections, I have
introduced exchangeable random graph models and U -statistics. Basically, these are the class of
network models and the tool for statistical inference that will be used. In this section, I will first
clearly define the framework in which these objects are used. Next, I will compile the diverse
contributions of this thesis and link them together. Finally, I give the general organization of
this thesis, showing how the different contributions are spread out in the different chapters of
this thesis.

1.6.1. General framework
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Bipartite exchangeable network models

We have previously seen how graphon theory can be used to represent dissociated exchange-
able graph models. Graphon models are latent space models with a set of i.i.d. latent variables.
We generalize it to bipartite and weighted graphs:

ξi
i.i.d.
∼ U[0,1], ∀1 ≤ i ≤m,

ηj
i.i.d.
∼ U[0,1], ∀1 ≤ j ≤ n,

Yij ∣ ξi, ηj ∼W(ξi, ηj), ∀1 ≤ i ≤m,1 ≤ j ≤ n,

where W ∶ [0,1]2 → Π(E) and Π(E) is the set of all probability distributions on E.

This representation is usually called a colored (bipartite) graphon. The graphon is classically
a symmetric function w ∶ [0,1]2 → [0,1]. A bipartite graphon drops the symmetry assumption,
since the sets of random variables (ξi)1≤i≤m and (ηj)1≤j≤n represent the two groups of nodes
of the bipartite graph. The colored graphon extends the graphon model to weighted graphs,
where the conditional distribution of Yij now takes values in E instead of {0,1}. In this thesis,
a simpler family of colored graphon models will be considered. These colored graphons can be
written as W(⋅, ⋅) = L(w(⋅, ⋅)), where w ∶ [0,1]2 → R and (L(µ))µ∈R is a family of probability
distribution with a unique parameter.

ξi
i.i.d.
∼ U[0,1], ∀1 ≤ i ≤m,

ηj
i.i.d.
∼ U[0,1], ∀1 ≤ j ≤ n,

Yij ∣ ξi, ηj ∼ L(w(ξi, ηj)), ∀1 ≤ i ≤m,1 ≤ j ≤ n,

The classic graphon model fits in this family when w only takes values in [0,1] and setting
L ∶= B. By analogy with the classic definition, we will simply refer to w as the graphon, despite
dropping the symmetry assumption and being real-valued and L is the link distribution.

Latent block model The Latent Block Model (LBM) (Govaert and Nadif, 2003) is the bipar-
tite version of the SBM. The LBM assumes that the two sets of nodes of the bipartite graphs can
be separately partitioned into groups. The distribution of the interaction between two nodes
is determined by the involved groups. Usually, this distribution is parametrized by a unique
parameter depending on the groups. The hierarchical form of the LBM is given by

Zi
iid
∼ M(1; α), ∀1 ≤ i ≤m,

Wj
iid
∼ M(1; β), ∀1 ≤ j ≤ n,

Yij ∣ Zi = k,Wj = ℓ ∼ L(πkℓ), ∀1 ≤ i ≤m,1 ≤ j ≤ n,
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where α and β are probability vectors of sizes K1 and K2, the respective numbers of groups for
nodes of type 1 and type 2, (L(θ))θ∈Θ is a family of probability distribution and π ∈MK1,K2(Θ)
is a matrix of K1 ×K2 parameters (Fig. 1.12).

Figure 1.12 – The latent block model (LBM). Left: a bipartite network and its adjacency matrix.
Middle: the ordered network and adjacency matrix according to the membership of the nodes
to groups. Right: a "summary" network, representing the probability matrix π as a network
between groups. Figure taken from Brault (2014).

The LBM can be written as a block-constant graphon, as

w(ξi, ηj) =∑
k,ℓ

πkℓ1{s(ξi) = k}1{t(ηj) = ℓ},

with

s(ξi) = 1 +
K

∑
k=1

1{ξi >
k

∑
k′=1

αk′} , and t(ηj) = 1 +
L

∑
ℓ=1

1{ηj >
ℓ

∑
ℓ′=1

βℓ′} .

Sometimes, to specify the distribution L of the model, we might write L-LBM, e.g. Bernoulli-
LBM or Poisson-LBM.
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g0(η) = g(η) =

ξi, ηj
iid
∼ U[0,1]

Yij ∣ ξi, ηj ∼ B(λf(ξi)g(ηj))

f0(ξ) =

f(ξ) =

Figure 1.13 – The bipartite expected degree distribution model (BEDD). The figure represents
several (reordered) adjacency matrices generated by binary BEDDs with constant (f0, g0) or
some other (f, g) degree distributions.

Bipartite expected degree distribution model The bipartite expected degree distribution
model (BEDD) (Ouadah et al., 2022) is the bipartite version of the EDD. Instead of one degree
distribution, the BEDD considers two degree distributions, one for each set of nodes. It can be
formulated as follows

ξ1, ..., ξm
i.i.d.
∼ U[0,1], ∀1 ≤ i ≤m,

η1, ..., ηn
i.i.d.
∼ U[0,1], ∀1 ≤ j ≤ n,

Yij ∣ ξi, ηj ∼ L(λf(ξi)g(ηj)), ∀1 ≤ i ≤m,1 ≤ j ≤ n,

where (L(µ))µ∈R is a family of probability distributions parametrized by their mean µ, λ ∈ R is
the density of the graph, f and g are functions [0,1]→ R such that ∫ f = ∫ g = 1.

In this formulation, the distributions of degrees are characterized by the functions f and g

(Fig. 1.13). More specifically, f and g can be viewed as the inverse of the cumulative distri-
bution function of the renormalized degree distribution, since E[n−1

∑
n
j=1 Yij ∣ ξi] = λf(ξi) and

E[m−1
∑

m
i=1 Yij ∣ ηj] = λg(ηj). The BEDD is a graphon model where the graphon has a product

form w(ξ, η) = λf(ξ)g(η). Sometimes, to specify the distribution L of the model, we might write
L-BEDD, e.g. Bernoulli-BEDD or Poisson-BEDD.
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Asymptotics

An asymptotic framework defines what happens when more data become available. There
are two types of asymptotics for networks. In the first one, new data brings more networks that
are considered as replicates from a unique model. In the other one, new data brings more nodes
and edges to a unique yet incomplete network, which is a subsample of the complete, possibly
infinite, network drawn from the model of interest.

Interaction data from ecosystems are collected by ecologists at different places, at different
times, under different conditions. Therefore, as opposed to many other types of network data,
ecological networks are by essence the result of an aggregation of individually sampled interaction
data. Because ecological interaction sampling is costly and most of the time incomplete, one
wishes to use as much data as possible to construct the networks. Even so, networks obtained by
aggregation are likely to be incomplete. The sampling effort needed to obtain a complete network
is not easily estimated. For these reasons, it is less common to use repeated measurements of
networks that can be considered as replicates drawn from the same model. Even if replicates
are available, they are often aggregated to grow a more complete network. Therefore, it is
reasonable to work with an asymptotic framework where the growing quantity is the number of
nodes, instead of a growing quantity of replicates.

This is especially well adapted to the exchangeability assumption, as each network can be
represented by a unique model, independent of the size. Indeed the extendibility property means
that every observed adjacency matrix is a submatrix of an infinite RCE matrix. Networks can
be studied in a space of models. This can be considered as a kind of "embedding". Embedding
a network means mapping it to some lower dimension space. In the framework of this thesis,
each network is mapped to the space of all RCE network models, possibly restricted to some
family of models. Therefore, the networks can be investigated in the space of models through
their representative using probabilistic and statistical tools. This makes sense for ecological data
since, to compare two ecosystems, one usually likes to compare the two networks associated to
the two ecosystems. A model-based analysis would compare the two models fitted to these
networks, which means the representatives of the two networks in the space of models. If the
space is restricted to some family of parametric models, then this can be done by comparing
their parameters. Since graphons characterize exchangeable graph models, they can also be used
to construct a comparison metric.

In this thesis, an observed adjacency matrix with growing dimensionsmN×nN are considered,
with mN →∞ and nN →∞. In most results, it is assumed that the numbers of rows and columns
grow at the same speed, with N = mN + nN and mN/N → ρ ∈]0,1[, but it is actually easy to
generalize the results to other behaviours of mN and nN , as shown in Chapter 4.
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One advantage of working with exchangeable models and this asymptotic framework is how
easy it is to jointly study networks of different sizes. Whereas statistical estimation of parameters
is one technique to investigate the models, many other tools can be used. As models are
characterized by their probability distributions, many approaches using tools from parametric
and nonparametric statistics, probability theory and even information theory can be combined
to analyze networks. The approach consists in identifying quantities of interests which can be
estimated with U -statistics.

U-statistics on bipartite networks

U -statistics are defined as the average of a function of a subsample of the data. When the
data is a bipartite adjacency matrix of size m × n, the kernel function h ∶ Mp,q(R) → R is a
function of a submatrix of size p × q, with 1 ≤ p ≤ m and 1 ≤ q ≤ n. The symmetry assumption
on the kernel translates to: for all (σ1, σ2) ∈ Sp × Sq,

h(Y(iσ1(1),...,iσ1(p);jσ2(1),...,jσ2(q))
) = h(Y(i1,...,ip;j1,...,jq)),

where Y(i1,...,ip;j1,...,jq) is the p× q submatrix consisting of the rows and columns of Y indexed by
i1, ..., ip and j1, ..., jq respectively.

With this symmetry assumption, since the order of the elements of i = {i1, ..., ip} and j =
{j1, ..., jq} does not matter, we use the notation hi,j ∶= h(Y(i1,...,ip;j1,...,jq)). Then the associated
U -statistic is

Um,n = (
m

p
)
−1
(
n

q
)
−1

∑
i∈Pp(JmK)
j∈Pq(JnK)

hi,j. (1.9)

Note that the assumption on the symmetry of h can be made without loss of generality. Indeed,
if h0 ∶Mp,q(R)→ R is not symmetric, then h ∶Mp,q(R)→ R defined by

h(Y(i1,...,ip;j1,...,jq)) = (p!q!)
−1

∑
(σ1,σ2)∈Sp×Sq

h0
(Y(iσ1(1),...,iσ1(p);jσ2(1),...,jσ2(q))

) (1.10)

has the correct symmetry property and the same average as h0.

The properties of Um,n depend on the dependency structure of the summed elements. Let
X(i1,...,ip;j1,...,jq) ∶= h(Y(i1,...,ip;j1,...,jq)), so that Um,n(Y ) is the average of the first entries of the in-
finite array X. In our framework, Y is an RCE matrix. As a consequence, X is a π-exchangeable
array such that for any two permutations σ1 and σ2 of S∞, we have

X
D
= (X(σ1(i1),...,σ1(ip);σ2(j1),...,σ2(jq)))1≤i1≠...≠ip≤∞

1≤j1≠...≠jq≤∞
.
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This also means
E[Um,n] = E[X(1,...,p;1,...,q)] = E[hJpK,JqK].

Therefore, Um,n is an unbiased estimator of X(1,...,p;1,...,q) = hJpK,JqK. The methodology developed
makes use of U -statistics to perform inference on the RCE network model. Thus, it does not
require a parametric model. It applies to all quantities that can be estimated by a function of
a subnetwork.

General method in a nutshell

Let θ be a quantity of interest that needs to be estimated on an observed network. Usually, θ
is a function of the parameters of a random network model. The goal is to find an estimator θ̂N ,
as well as a confidence interval for θ. The idea is to use estimators that are either U -statistics,
or functions of U -statistics, i.e. of the form θ̂N ∶= UN or θ̂N ∶= g(U

h1
N , ..., UhD

N ), where g is a
differentiable function, (h1, ..., hD) a vector of kernel functions, potentially of different sizes, and
Uh

N the U -statistic with kernel h.

Then, if the network model is RCE, we hope to be able to use some theoretical results to
identify the limit distribution for θ̂N when N → ∞. These theoretical results are often of the
form √

γ(N)

v
(θ̂N − θ)

D
ÐÐÐ→
N→∞

Q,

where γ(N) is some function of N such that γ(N) →∞, v is the asymptotic variance and Q is
some distribution with variance 1. γ(N) and v are related to the variance of θ̂N by the relation
V[θN ] = v/γ(N) + o(γ(N)

−1). However, v usually must be estimated from the data. If v̂N is a
consistent estimator for v, then Slutsky’s theorem yields

√
γ(N)

v̂N
(θ̂N − θ)

D
ÐÐÐ→
N→∞

Q. (1.11)

For x ∈]0,1[, denote qx the quantile of order x for Q, i.e. if W is a random variable with dis-
tribution Q, then P(W ≤ qx) = x. Asymptotic confidence intervals for θ can be built from (1.11).
For example,

IN(α) = [θ̂N − q1−α/2

√
v̂N

γ(N)
, θ̂N + qα/2

√
v̂N

γ(N)
]

is an asymptotic confidence interval at level α for θ, i.e. P(θ ∈ IN(α))ÐÐÐ→
N→∞

1 − α.

With confidence intervals as such, we are able to obtain statistical guarantees for θ̂N . There-
fore, we are able to perform most statistical inference tasks on network models, including esti-
mation of parameters, hypothesis testing and comparison of networks.
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1.6.2. Results

The list of ingredients needed to apply this method to observed networks consists of:

1. an RCE network model, from which the quantity of interest can be identified,

2. an estimator for the quantity of interest, which can be written as a function of U -statistics,

3. a weak convergence result on this function of U -statistics,

4. an estimator of the asymptotic variance of this function of U -statistics,

5. a way to efficiently compute the two estimators of the quantity of interest and the asymp-
totic variance.

The theoretical part of this thesis mainly deals with establishing limit theorems for functions of
U -statistics and estimators for their asymptotic variance. Through many examples illustrating
these theoretical results, I will show how to choose suitable network models and estimators
according to the network analysis question. Finally, the computation cost of these estimators
is usually problem-dependent. Although there is a high computational cost in general for these
estimators, in many examples, I give some insights about how one might mitigate this problem,
for example using matrix products. The code is available on an online repository and implements
some of these examples, using efficient computation.

Recoverability of BEDD models

The first result of this thesis is a bit different from the rest. It does not directly deal with
U -statistics, but it is one of the motivating reasons for using them in my methodology. It
establishes the recoverability of the BEDD model by the joint distribution of what we call a
quadruplet, that is, a submatrix of size 2 × 2.

Before anything, note that there is a problem of identifiabilty which is inherent to exchange-
able network models, but this can be easily circumvented. Indeed, any RCE network model
can be written as a graphon model. However, the graphon model is not technically identifiable.
Let w be a graphon. For any pair π = (π1, π2) ∈ Π([0,1])2 where Π([0,1]) is the set of the
measure-preserving transformations on [0,1], denote wπ(ξ, η) ∶= w(π1(ξ), π2(η)).

The G(n,w) model yields the same distribution as the G(n,wπ) model where wπ(ξ, η) =

w(π1(ξ), π2(η)). Conversely, if two graphon models G(n,w) and G(n,w′) yield the same distri-
bution, then necessarily, there exists π ∈ Π([0,1])2 and π′ ∈ Π([0,1])2 such that w′π′ = wπ (Dia-
conis and Janson, 2008). Therefore, the family of graphons

{w′ ∶ w′π′ = wπ, π ∈ Π([0,1])2, π′ ∈ Π([0,1])2,w′ ∶ [0,1]2 → [0,1]}
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is a class of equivalence for w, and we say that the graphon model is identifiable up to its class
of equivalence.

In the BEDD, the same phenomenon occurs. The functions f and g are identifiable up to
their class of equivalence, generated by all the measure-preserving transformations of [0,1]. As
a side note, it is possible to set constraints on the functions f and g in the definition of the
BEDD such that there is only a unique eligible f and g from their respective class of equivalence,
for example, see Yang et al. (2014) for a similar argument on graphons.

Now, the following theorem states that, f and g are uniquely characterized, up to their class
of equivalence, by some families (Fk)k≥1 and (Gk)k≥1.

Theorem 2.3.2 (Chp. 2, Le Minh, 2023). Let Θ = (λ, f, g) be BEDD parameters and Y ∼

BEDD(Θ). The distribution of Y is uniquely determined by λ, (Fk)k≥1 and (Gk)k≥1, where
Fk ∶= ∫ f

k and Gk ∶= ∫ g
k for all k ≥ 1.

Furthermore, to show the recoverability of the BEDD model by a quadruplet, it is enough
to show that the two distinct sets of parameters (which are not equivalent) for the BEDD lead
to necessarily distinct distributions for a quadruplet. With the previous theorem, we only need
to prove it for distinct λ, (Fk)k≥1 and (Gk)k≥1. We have managed to show this result for a class
of BEDD models in which the distribution L verifies an assumption.

Theorem 2.3.4 (Chp. 2, Le Minh, 2023). Suppose that for the family of distributions L(µ),
there exists a sequence of functions (Ψk)k≥1 such that if a random variable X ∼ L(µ), then for
every k ≥ 1,

E[Ψk(X)] = µ
k.

Then, in this case, for all k ∈ N, Fk and Gk are uniquely determined by the joint distribution of
a quadruplet.

In reality, this result, even though it has only been proved later in the thesis, was intuited
before starting to devise my method. It had been the motivation behind my use of U -statistics:
since a quadruplet is enough to contain all the information of the model, there is hope that a
U -statistic averaging a function of quadruplets is enough to estimate anything of interest. This
is also the reason why my first article is mainly focused on U -statistics of quadruplets, instead
of submatrices of any size p × q.

Hoeffding-type decompositions

Decomposition on AHK variables As I have explained earlier, the Hoeffding decomposition
is a convenient tool to investigate U -statistics of i.i.d. variables. However, generalizing the
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decomposition to U -statistics of RCE matrices is not straightforward. Remember that in the
i.i.d. case, the Hoeffding decomposition consists of orthogonal projections of the kernel h on
functional subspaces generated by the observations (X1,X2, ...), see equation (1.6). For a RCE
matrix Y , a decomposition based on subspaces generated by the entries of Y would not have
verified the orthogonality conditions, because the latter are not i.i.d. The main idea behind
finding a Hoeffding-type decomposition is to use the Aldous-Hoover-Kallenberg representation
of RCE matrices. This representation enables us to write Y , and therefore the U -statistic, as a
function of the AHK variables (ξi)i≥1, (ηj)j≥1 and (ζij)i≥1,j≥1. Let (ξi)i≥1, (ηj)j≥1 and (ζij)i≥1,j≥1

be families of AHK variables associated to Y , e.g. there exists a function ϕ such that for all
i ≥ 1, j ≥ 1, we have

Yij
a.s.
= ϕ(ξi, ηj , ζij). (1.12)

Instead of projecting on the subspaces generated by the observations, we can project on the
subspaces generated by AHK variables. Because the AHK variables are i.i.d., the orthogonality
can be obtained by choosing the right sets of AHK variables to generate the subspaces.

Like in the unidimensional case, the decomposition of the U -statistic is directly derived from
the decomposition of the kernel function. I ended up deriving two distinct systems of projections,
which can qualify as Hoeffding-type decompositions for U -statistics of RCE matrices.

First decomposition The first decomposition has been inspired by the fact that the Ho-
effding decomposition in the unidimensional case is a decomposition subspaces generated by
observations, i.e. sets of the form (Xi). Since we cannot directly use the entries of Y without
breaking the orthogonality, we use the sets of AHK variables Ai,j defined as follows. For any
i ∈ P(JmK) and j ∈ P(JnK), h(Yi,j) is measurable by the set of AHK variables

Ai,j ∶= ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i
j∈j
).

The projections are defined as follows. Let i′ ∈ Pr′(N) and j′ ∈ Pc′(N).

pi′,j′
(hi,j) = E[hi,j ∣ Ai′,j′] − ∑

(0,0)≤(r′,c′)<(r,c)
∑

i′′⊂i′
i′′⊂i′

pi′′,j′′
(hi,j).

Then, the decomposition is given by

hi,j =∑
i′⊆i
i′⊆i

pi′,j′
(hi,j).

Second decomposition The second decomposition emerged later in the thesis, while adapting
the theory of generalized U -statistics by Janson and Nowicki (1991) to my case. Let G be a
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bipartite graph. We can define the set H(G) of AHK variables associated to G as

H(G) = ((ξi)i∈V1(G), (ηj)j∈V2(G), (ζij)(i,j)∈E(G))

and H(G) = σ(H(G)), the σ-field generated by the variables of H(G). The projections are then
defined similarly than in the previous system

pG
(hi,j) = E[hi,j ∣H(G)] − ∑

F⊂G
pF
(hi,j),

and the decomposition for h follows

hi,j = ∑
G⊆Ki,j

pG
(hi,j).

Link between the two decompositions Both decompositions are proved to be orthogonal
decompositions, but they have different uses. The first projection is the minimal Hoeffding-
type decomposition, insofar as the U -statistic is, in consequence, decomposed into the smallest
number of terms capturing all the order of variation of the variance of Um,n. Indeed, we will
show that

V[Um,n] = ∑
(0,0)<(r,c)≤(p,q)

(
p

r
)

2
(
q

c
)

2
(
m

r
)
−1
(
n

c
)
−1
V[pJrK,JcK

(hJpK,JqK)], (1.13)

so for some (r, c) such that (0,0) < (r, c) ≤ (p, q), the contribution of V[pJrK,JcK(hJpK,JqK)] in
V[Um,n] is O(m−rn−c).

The second decomposition uses projections on more subspaces than the first decomposition.
Indeed, the sets used in the first decomposition can be written with bipartite graphs like in the
second decomposition, since Ai,j =H(Ki,j), where Ki,j = (V1(Ki,j), V2(Ki,j),E(Ki,j)) ∶= (i, j, i×j)
is the fully connected bipartite graph with row nodes i and column nodes j. In constrast, the
second decomposition also considers the subspaces generated by H(G) for all G ⊆Ki,j. Although
it is much more complex than the first decomposition, it can be used to identify all the limit
distributions for degenerate U -statistics, which is not possible with the first decomposition.

Limit theorems

The key theoretical result for my methodology is the identification of the limit distribution
of the U -statistics UN ∶= UmN ,nN

of row-column exchangeable matrices of size mN × nN when
N → ∞, where N = mN + nN and mN/N → ρ ∈]0,1[. All of these results can be extended to
the multivariate case, i.e. the joint convergence of a vector of U -statistics via the Cramér-Wold
device. Provided all the involved U -statistics have the same rate of convergence, e.g. they are
all non-degenerate or degenerate of the same order, then these results can be further extended
to functions of U -statistics, using the delta-method, the details of which are left aside for now.



In
tr

od
uc

ti
on

1.6. Contributions 57

Quadruplets kernels The first convergence results apply to U -statistics with kernels of
quadruplets, i.e. submatrices of size 2 × 2.

Theorem 2.2.5 (Chp. 2, Le Minh, 2023). Let Y be a RCE matrix. Let h be a quadruplet kernel
such that E[h2

{1,2},{1,2}] < ∞. Let FN = σ((U
h
k,l, k ≥ mN , l ≥ nN)) and F∞ ∶= ⋂∞N=1FN . Set

U∞ = E[h{1,2};{1,2} ∣ F∞] and

V =
4
ρ

Cov(h{1,2},{1,2}, h{1,3},{3,4} ∣ F∞) +
4

1 − ρ
Cov(h{1,2},{1,2}, h{3,4},{1,3} ∣ F∞).

If P(V > 0) > 0, then
√
N(UN −U∞)

D
ÐÐÐ→
N→∞

W,

where W is a random variable with characteristic function ϕ(t) = E[exp(−1
2 t

2V )].

Theorem 2.2.7 (Chp. 2, Le Minh, 2023). In addition to the hypotheses of Theorem 2.2.5, if Y
is dissociated, then Uh

∞ and V h are constant and

√
N(UN −U∞)

D
ÐÐÐ→
N→∞

N (0, V ),

More precisely,

1. U∞ = E[h{1,2},{1,2}],

2. V = 4
ρCov(h{1,2},{1,2}, h{1,3},{3,4}) +

4
1−ρCov(h{1,2},{1,2}, h{3,4},{1,3}).

The first theorem applies to both non-dissociated and dissociated U -statistics. It has been
proved using the backward martingale convergence theorem of Eagleson and Weber (1978)
(Thm. 1.5.8). The hypothesis P(V > 0) > 0 ensures that the U -statistic is non-degenerate.
This result shows that in the general non-degenerate case, where Y may not be dissociated, the
distribution of a U -statistic converges to a mixture of gaussian variables. Because it is a complex
distribution, this result cannot be easily exploited. The second theorem is a consequence in the
dissociated case. It is deduced from a Hewitt-Savage-type argument. For statistical applications,
the second part is the one being exploited.

Non-degenerate kernels of size p × q Although the previous theorem has been proved for
kernels of size 2 × 2, the proof can actually be extended to kernels of any size p × q, with the
burden of heavier notation and combinatorial complexity. Later in the thesis, I have found out
that the Hoeffding-type decompositions give simpler proofs for this result, even for kernels of
size p × q. The following theorem is the extension of the previous theorem in the dissociated
case, proved with a Hoeffding-type decomposition.
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Theorem 3.3.1 (Chp. 3, Le Minh et al., 2023). Let Y be a dissociated RCE matrix. Let h be
a p × q kernel function such that E[h2

JpK,JqK] <∞. Set U∞ = E[hJpK,JqK] and

V =
p2

ρ
V[p{1},∅(hJpK,JqK)] +

q2

1 − ρ
V[p∅,{1}

(hJpK,JqK)].

If V > 0, then
√
N(UN −U∞)

D
ÐÐÐ→
N→∞

N (0, V ).

Note that despite having seemingly different expressions, the asymptotic variance V is the
same in the two theorems. If p = q = 2, then

V[p{1},∅(hJ2K,J2K)] = V[E[h{1,2},{1,2} ∣ ξ1]] = Cov(h{1,2},{1,2}, h{1,3},{3,4}) (1.14)

and

V[p∅,{1}
(hJ2K,J2K)] = V[E[h{1,2},{1,2} ∣ η1]] = Cov(h{1,2},{1,2}, h{3,4},{1,3}). (1.15)

Degenerate kernels of size p× q Finally, in the degenerate case, the problem is much more
complex, even in the dissociated case. To understand degeneracy, one could use the developed
expression of the variance of V[UN ] given by equation (1.13). The degenerate case arises when
V , which would have been the dominant term of the V[UN ], is equal to 0. In this case, the
dominant part corresponds to the positive variance terms V[pJrK,JcK(hJpK,JqK)] with the smallest
value d = r + c. In this case, their contribution is O(N−d). The right normalization for the limit
theorem is therefore not

√
N , but Nd/2.

As for the limit distribution, it is not necessarily Gaussian. It can be identified with the
second Hoeffding-type decomposition. Again, the variance can be decomposed according to this
projection system similarly to (1.13). Let Γr,c be the set of bipartite graphs G with V1(G) = JrK

and V2(G) = JcK such that any bipartite graph with r row nodes and c column nodes is isomorphic
to exactly one element of Γr,c. Then

V[Um,n] = ∑
(0,0)<(r,c)≤(p,q)

(
p

r
)

2
(
q

c
)

2
(
m

r
)
−1
(
n

c
)
−1
r!c! ∑

G∈Γr,c

∣Aut(G)∣−1V[pG
].

The dominating part consists of positive variance terms corresponding to projections character-
ized by graphs G ∈ ⋃(r,c)∶r+c=d Γr,c, for some d. d is called the principal degree of h and these
graphs G are called the principal support graphs. The limit distribution of UN depends on the
form of its principal support graphs. The following theorem identifies the gaussian case.
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Theorem 4.2.8 (Chp. 4). If all principal support graphs of UN are connected, then

Nd/2
(UN −U∞)

D
ÐÐÐ→
N→∞

N (0, σ2
),

where
σ2
= ∑
(0,0)<(r,c)≤(p,q)

r+c=d

p!2q!2

(p − r)!2(q − c)!2 ∑
G∈Γr,c

∣Aut(G)∣−1V[pG
].

I have not proved the other cases in this thesis. However, one can assume that, as in Jan-
son and Nowicki (1991), the type of the limit distribution depends on the highest number of
connected components, here denoted b, found in the principal support graphs. In Janson and
Nowicki (1991), if b = 1, then the limit distribution is a Gaussian, if b = 2, then it is a sum
of chi-squared distributions. For any b, it is a polynomial function of independent Gaussian
distributions with degree b. There is a striking analogy with the asymptotics of degenerate U -
statistics of i.i.d. observations (Thm. 1.5.13), but the form of the limit distribution is given by
the number b instead of the principal degree d. Despite still unproven, I give several examples
that seem to corroborate this assumption.

A variance estimator

In this thesis, I have used two approaches to estimate the asymptotic variance of U -statistics.
Note that, just as limit theorems for U -statistics can be generalized to functions of U -statistics
through the delta-method, so can the estimators of the asymptotic variance.

First variance estimator The asymptotic variances given by the limit theorems depend on
the distribution of Y , i.e. the network model, and the kernel h. An analytic expression can
be calculated for the asymptotic variance. Then, one hopes that all the quantities appearing
in the analytic expression can be estimated to build a consistent estimator for the asymptotic
variance. This approach works for both non-degenerate and degenerate U -statistics, but there
are two downsides. First, the analytic calculation of the asymptotic variance might be tedious,
especially for degenerate cases. Second, there is no general technique to estimate the quantities
appearing in the analytic expression. In my examples, all these quantities can be estimated with
other U -statistics. However, this might be due to chance.

Second variance estimator Later, I have devised a general estimator for V of Theorem 3.3.1.
Notice that the first term appearing in V is V[p{1},∅(hJpK,JqK)] = V[E[hJpK,JqK ∣ ξ1]]. Because the
(ξi)i≥1 are i.i.d., the conditional expectations E[hi,j ∣ ξi] are also i.i.d. for all i ≥ 1 as long as
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i ∈ i. Denote
µ(i) = E[hi,j ∣ ξi]

for any (i, j) ∈ Pp(N) × Pq(N) such that i ∈ i. By exchangeability, this quantity does not
depend on the elements of (i, j) other than i. Therefore, the unbiased variance estimator for
V[p{1},∅(hJpK,JqK)] using mN rows is

1
mN(mN − 1) ∑

1≤i1<i2≤mN

(µ(i1) − µ(i2))2.

However, the (µ(i))i≥1 are unknown, so we also need to estimate them. This can be done with
the following estimator

µ̂
(i)
N ∶= (

mN − 1
p − 1

)
−1
(
nN

q
)
−1

∑
(i,j)∈Pp(N)×Pq(N)

i∈i

hi,j. (1.16)

Plugging in the estimators for the conditional expectations in the expression of the unbiased
variance estimator, we obtain

v̂1,0
N ∶= (

mN

2
)
−1

∑
1≤i1<i2≤mN

(µ̂
(i1)
N − µ̂

(i2)
N )2

2
.

By symmetry, define for all j ≥ 1,

ν̂
(j)
N ∶= (

mN

p
)
−1
(
nN − 1
q − 1

)
−1

∑
(i,j)∈Pp(N)×Pq(N)

j∈j

hi,j. (1.17)

and

v̂0,1
N ∶= (

nN

2
)
−1

∑
1≤j1<j2≤nN

(ν̂
(j1)
N − ν̂

(j2)
N )2

2
.

Then, the following theorem enables us to use v̂1,0
N and v̂0,1

N to build a consistent estimator for
V .

Theorem 3.4.4 (Chp. 3, Le Minh et al., 2023). We have v̂1,0
N

P
ÐÐÐ→
N→∞

V[p{1},∅(hJpK,JqK)] and

v̂0,1
N

P
ÐÐÐ→
N→∞

V[p∅,{1}(hJpK,JqK)]. As a consequence,

V̂N ∶=
p2

ρ
v̂1,0

N +
q2

1 − ρ
v̂0,1

N

P
ÐÐÐ→
N→∞

V.

V̂N enables us to consistently estimate V without actually doing any analytic calculation.
In this respect, it is similar to resampling methods such as bootstrap or jackknife methods.
In my simulation studies, V̂N is at least as precise as the variance estimated through the first
method. Therefore, this estimator works well in the non-degenerate case. For degenerate cases,
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it is actually possible to derive analogous consistent estimators for V[pJrK,JcK(hJpK,JqK)] for all
(0,0) ≤ (r, c) ≤ (p, q) in the same way, but as r and c respectively grow closer to p and q,
they are less precise. This is due to the fact that the number of terms in the estimator of the
type (1.16) or (1.17) is the average of O(mp−r

N nq−c
N ) terms.

1.6.3. Outline

Identification of degeneracy
(all chapters)

Non-degenerate CLT
(Chp. 2, Chp. 3)

Order of degeneracy and principal 
support graphs (Chp. 4)

Degenerate CLT (Gaussian)
(Chp. 4)

Degenerate CLT (non-Gaussian)
(conjectured in Chp. 4)

Biological question

Network model and U-statistic
(all chapters)

Statistical inference
Plug-and-play 

variance estimator
(Chp. 3)

Recoverability of the 
BEDD models

(Chp. 2)

Hoeffding-type 
decompositions
(Chp. 3, Chp.4)

non-degenerate degenerate

connected principal 
support graphs

unconnected principal 
support graphs

Figure 1.14 – The theoretical results and the methodology developed in this thesis.

Chapter 2 focuses on limit theorems for U -statistics of both non-dissociated and dissociated
RCE matrices, with quadruplet kernels. These results are obtained using backward martingale
arguments. In the non-dissociated case, the U -statistic converges to a mixture of Gaussians,
which becomes a simple Gaussian in the dissociated case. The recoverability of the BEDD
models is also proven in this chapter. Examples include the estimation of network row degree
heterogeneity, network comparison and motif counting in networks.

Chapter 3 defines a first Hoeffding-type decomposition of U -statistics on dissociated RCE
matrices. This decomposition is used to prove the limit theorem for U -statistics, with kernels
of any size. A consistent estimator for their asymptotic variance is also built. Examples include
motif counting in networks, estimation of graphon distances and the estimation of network row
degree heterogeneity. The analysis of a legislature network dataset illustrates the method.
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Chapter 4 deals with degenerate U -statistics of dissociated RCE matrices. A second
Hoeffding-type decomposition is exhibited. Using this new decomposition, a limit theorem is
derived for degenerate U -statistics when the limit is Gaussian. In the general case (non-Gaussian
limit), a conjecture is formulated and commented. Examples of degenerate statistics are given,
including the testing of network row degree heterogeneity.

Chapter 5 suggests avenues for future research, building on the work presented in this the-
sis. Some of these ideas consist in completing the methodology, providing it with the missing
elements. Other ideas aim to improve the methodology, by dealing with the approximation
error when using asymptotic results. Finally, the last ideas are about extending the current
framework using RCE matrices to network models better suited to real networks, in particular
sparse network models.

Figure 1.14 summarizes the previously listed results, mentioning in which chapter they ap-
pear.
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Chapter2
U-statistics on bipartite
exchangeable networks

This chapter corresponds to the following article:

Le Minh, T. (2023). U-statistics on bipartite exchangeable networks. ESAIM: Probability
and Statistics, 27:576–620. https://doi.org/10.1051/ps/2023010

Abstract Bipartite networks with exchangeable nodes can be represented by row-column ex-
changeable matrices. A quadruplet is a submatrix of size 2 × 2. A quadruplet U -statistic is the
average of a function on a quadruplet over all the quadruplets of a matrix. We prove several
asymptotic results for quadruplet U -statistics on row-column exchangeable matrices, including a
weak convergence result in the general case and a central limit theorem when the matrix is also
dissociated. These results are applied to statistical inference in network analysis. We suggest a
method to perform parameter estimation, network comparison and motifs count for a particular
family of row-column exchangeable network models: the bipartite expected degree distribution
(BEDD) models. These applications are illustrated by simulations.
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2.1. Introduction

RCE matrices Networks arise naturally when considering interaction data. The nodes of
a network represent the entities of a system and an edge between two nodes represents the
interaction between the associated entities. The network is bipartite when there are two different
sets of nodes, and edges only link nodes of different types. A natural representation for a bipartite
network is its rectangular adjacency matrix. The rows and columns of an adjacency matrix Y

represent the two different types of nodes and each entry Yij encodes the interaction between
the nodes associated to row i and column j, e.g. for binary networks, Yij = 1 if i and j interact
and Yij = 0 else, or for weighted networks, Yij is the weight of the edge linking i and j.

Many probabilistic network models assume that the network units, either edges or nodes,
are exchangeable, i.e. are invariant by permutation. In the adjacency matrix of a bipartite
network, the edge-exchangeability corresponds to the exchangeability of all its entries (full ex-
changeability), such as in Adamczak et al. (2016), while the node-exchangeability refers to the
exchangeability of its rows and columns, such as in Aldous (1981).
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Recent developments have been made for edge-exchangeable models (Cai et al., 2016;
Williamson, 2016), but node-exchangeable models have a longer history for both unipartite
and bipartite networks and encompasses families of models such as the stochastic block model
(Holland et al., 1983; Snijders and Nowicki, 1997), the latent block model (Govaert and Nadif,
2003), the latent position model (Hoff et al., 2002) or the random dot product graph model
(Young and Scheinerman, 2007). Implicitly, the exchangeability of the network units is asso-
ciated with a sampling assumption. The choice of whether considering the exchangeability for
edges or nodes depends on what is assumed to be sampled to observe the networks, whether it
be edges or nodes (Crane and Dempsey, 2018).

Let us observe a bipartite network represented by a finite submatrix of size m × n. We
assume that the nodes of the same type are infinitely exchangeable, which means that the
row elements and the column elements of the adjacency matrix are separately invariant under
infinite permutation. The infinite exchangeability assumption is equivalent to considering that
this observed network is made of the first m rows and n columns of an infinite adjacency
matrix, whose rows and columns are exchangeable. This assumption is similar to Orbanz and
Roy (2014) for unipartite networks and provides a consistent framework to analyze networks
of different sizes. It can be used with many random network models, including the ones listed
above (stochastic block model, latent block model, latent position model and random dot product
graph model).

However, it has to be distinguished from the finitely exchangeable case. Finite exchangeabil-
ity does not imply infinite exchangeability, for example, if the observed network consists of the
first m rows and n columns of a larger adjacency matrix but of finite size. In that case, we say
that the (finitely) exchangeable sequences of nodes are not infinitely extendible (Konstantopou-
los and Yuan, 2019; Mai, 2020). The finitely exchangeable case for networks has been notably
studied by Lauritzen et al. (2018), but is out of scope of our paper. From here, the concept of
exchangeability will always refer to infinite exchangeability, unless explicitely specified.

Thus, the exchangeability property of our infinite adjacency matrices is called row-column
exchangeability. Let S∞ be the group of finite permutations over N. An infinite matrix Y is said
to be row-column exchangeable (RCE) if for any couple Φ = (σ1, σ2) ∈ S2

∞,

ΦY D= Y,

where ΦY ∶= (Yσ1(i)σ2(j))i≥1,j≥1.

U-statistics U -statistics form a large class of statistics with interesting properties for many
purposes such as estimation and hypothesis testing. We are interested in using them to analyze
RCE networks.
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Given a sequence of random variables (Y1, Y2, ..., Yn) numbered with a unique index, a U -
statistic is defined as the following average

Uh
n = (

n

k
)
−1

∑
1≤i1<i2<...<ik≤n

h(Yi1 , Yi2 , ..., Yik
), (2.1)

where h is a symmetric function of size k referred to as the kernel.

The case where the (Yi)i≥1 are i.i.d. is well-studied. Halmos (1946) established the optimality
of U -statistics as unbiased estimators and Hoeffding (1948) derived a central limit theorem
(CLT), which ensures their asymptotic normality provided E[h(Yi1 , Yi2 , ..., Yik

)2] < ∞. For
dependent cases, results exist for several dependency strucures, for example Nandi and Sen
(1963); Zhao and Chen (1990) for finitely exchangeable variables, Reitzner and Schulte (2013)
for Poisson point processes or Duchemin et al. (2020, 2022) for Markov chains.

In the infinitely exchangeable case, it is particularly convenient to view h(Yi1 , Yi2 , ..., Yik
) as

an array of random variables (Xi)i indexed by k-tuples i = (i1, i2, ..., ik) where Xi =X(i1,i2,...,ik).
With this notation, it becomes clear that the U -statistic defined by (2.1) is the sum of the
corresponding entries of the k-dimensional array X. But (Y1, Y2, ...) being exchangeable implies
that the array X is jointly exchangeable, i.e. it is invariant by the action of joint permutations
on each of its indices, for any sequence of k-tuples (i, j, ...) ∈ Nk and for any finite permutation
σ ∈ S∞,

(Xi,Xj , ...)
D
= (X(σ(i1),σ(i2),...,σ(ik)),X(σ(j1),σ(j2),...,σ(jk)), ...). (2.2)

Eagleson and Weber (1978) proved a CLT for sums jointly exchangeable arrays, which applies
to U -statistics of exchangeable sequences. Many other asymptotic results for U -statistics of
exchangeable sequences were derived afterwards, such as a Berry-Esseen bound (van Zwet, 1984)
and a law of iterated logarithm (Scott and Huggins, 1985).

In relation with the existing literature, we add here the definition of separate exchangeability.
(Xi)i is said to be separately exchangeable if for any sequence of k-tuples (i, j, ...) ∈ Nk and for
any permutations σ1, σ2, ..., σk of S∞,

(Xi,Xj , ...)
D
= (X(σ1(i1),σ2(i2),...,σk(ik)),X(σ1(j1),σ2(j2),...,σk(jk)), ...). (2.3)

U-statistics for RCE matrices Our contribution applies to U -statistics based on submatri-
ces of size 2 × 2, that we call quadruplets, of an (infinite) RCE matrix Y

Y(i1,i2;j1,j2) ∶=
⎛

⎝

Yi1j1 Yi1j2

Yi2j1 Yi2j2

⎞

⎠
.

Their kernels are real functions h over quadruplets. To mimic the kernel symmetry in the
unidimensional case, we assume that they present the following symmetry property: for any
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matrix Y ,
h(Y(1,2;1,2)) = h(Y(2,1;1,2)) = h(Y(1,2;2,1)) = h(Y(2,1;2,1)). (2.4)

This assumption can be made without loss of generality for U -statistics, since any quadruplet
function k can be made symmetric considering

h(Y(1,2;1,2)) =
1
4
(k(Y(1,2;1,2)) + k(Y(2,1;1,2)) + k(Y(1,2;2,1)) + k(Y(2,1;2,1)))

and E[h(Y(1,2;1,2))] = E[k(Y(1,2;1,2))].

Applied to an observed network represented by the first m rows and n columns of Y , a
quadruplet U -statistic is then defined by

Uh
m,n = (

m

2
)
−1
(
n

2
)
−1

∑
1≤i1<i2≤m
1≤j1<j2≤n

h(Y(i1,i2;j1,j2)), (2.5)

where (m2 ) is the number of 2-combinations from m elements. For clarity, we define the 4-
dimensional array X using the following notation

X{i1,i2;j1,j2} ∶= h(Y(i1,i2;j1,j2))

which means that a U -statistic is the mean of the first (m2 ) × (
n
2) entries of X. However, U -

statistics of jointly exchangeable arrays deal with the mean of the first (m4 ) entries of the array X.
Therefore, Theorem 4 of Eagleson and Weber (1978) applies to U -statistics of square matrices,
but not generally to the case of bipartite networks, where row and column nodes are distinct
by nature. In particular, U -statistics for RCE matrices allow row and column indices to overlap
and most importantly, m to be different from n. Instead, the invariance structure of X is a
special case of π-exchangeability (Kallenberg, 1999), where for any two permutations σ1 and σ2

of S∞, we have

(X{i1,i2;j1,j2}){i1,i2}⊂N
{j1,j2}⊂N

D
= (X{σ1(i1),σ1(i2);σ2(j1),σ2(j2)}){i1,i2}⊂N

{j1,j2}⊂N
. (2.6)

Therefore, X is not separately exchangeable because, compared to (2.3), the same permutation
σ1 has to be applied on both row indices i1 and i2 and the same permutation σ2 on both column
indices j1 and j2.

Lemma 12 of Kallenberg (1999) establishes a strong law of large numbers for π-exchangeable
variables, which applies to our U -statistics. Our aim is to establish a weak convergence theorem
similar to Theorem 4 of Eagleson and Weber (1978). In the recent literature, two related results
were obtained by Austern and Orbanz (2022) and Davezies et al. (2021). Austern and Orbanz
(2022) explains how a result from Lindenstrauss (1999) can be translated to a strong law of
large numbers for sums of exchangeable arrays and their Theorem 17 is analogous to Theorem
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4 of Eagleson and Weber (1978) but it is obtained using Stein’s method. Davezies et al. (2021)
adopted a functional point of view. Their Theorem 2.1 is a Donsker-type version of the same
result on jointly exchangeable arrays and Theorem 3.4 is an extension to separately exchangeable
arrays. Because U -statistics of jointly exchangeable arrays are not suited to bipartite networks
and because our arrays are not separately exchangeable, these results do not apply to our U -
statistics of RCE matrices, as defined in (2.5) where (2.6) is satisfied.

To generalize these results to our case, our proof relies on the convergence of sums of backward
martingales (Thm. 1 of Eagleson and Weber, 1978). We derive a CLT result in the case where
the RCE matrix Y is dissociated, i.e. any of its submatrices with disjoint indexing sets are
independent. This CLT excludes the degenerate case (i.e. when the convergence rate to the
limiting distribution is greater than

√
N , see Sect. 2.4) through a clear assumption on the

asymptotic variance. In the degenerate case, the convergence result of Austern and Orbanz
(2022) does not lead to a CLT neither, and Davezies et al. (2021) proved a different convergence
theorem. We offer a discussion on the degenerate case and its implications in Section 2.4.
Finally, we recall that the backward martingale approach also yields Kallenberg’s strong law of
large numbers (Kallenberg, 1999).

In the last part of this work, we will put a special emphasis on the statistical analysis of
bipartite networks. We introduce two versions of a RCE matrix model, the Bipartite Expected
Degree Distribution (BEDD) model and we explain how our theorems apply to both of them. We
suggest a method to perform statistical inference on these models using quadruplet U -statistics
through several examples and we discuss how one can extend it.

Outline The weak convergence theorem in the general case and the CLT in the dissociated
case are presented and proven in Section 2.2. We shed further light on the difference between
the dissociated and the non-dissociated cases using the Aldous-Hoover representation theorem.
Section 2.3 illustrates our results with applications to statistical network analysis using a RCE
model and several examples of inference tasks.

2.2. Main result

2.2.1. Asymptotic framework

Our results apply in an asymptotic framework where the numbers of rows and columns of
the submatrix used in the calculation of the U -statistic grow at the same rate, i.e. m/(m + n)→
c ∈]0,1[. To simplify the proofs, we allow only one row or one column to be added to the
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submatrix. Now, we build a sequence of dimensions (mN , nN)N≥1 for the submatrix satisfying
these conditions.

Definition 2.2.1 (Sequence of dimensions). Let c be an irrational number such that 0 < c < 1.
For all N ∈ N, we define mN = 2+ ⌊c(N + 1)⌋ and nN = 2+ ⌊(1− c)(N + 1)⌋, where ⌊⋅⌋ is the floor
function.

Proposition 2.2.2. mN and nN satisfy:

1. mN

mN+nN
ÐÐÐ→
N→∞

c,

2. mN + nN = 4 +N , for all N ∈ N.

Corollary 2.2.3. At each iteration N ∈ N∗, one and only one of these two propositions is true:

1. mN =mN−1 + 1 and nN = nN−1,

2. nN = nN−1 + 1 and mN =mN−1.

Throughout the paper, only sequences satisfying Definition 2.2.1 are considered. Such se-
quences mN and nN satisfy the desired growth conditions (proof given in Appendix 2.A). We
investigate the asymptotic behaviour of Uh

m,n through Uh
N defined as follows.

Definition 2.2.4. With (mN , nN)N≥1 introduced by Definition 2.2.1 and Uh
m,n specified by equa-

tion (2.5), we set the sequence of U -statistics (Uh
N)N≥1 such that for all n ∈ N, Uh

N = U
h
mN ,nN

.

2.2.2. Theorems

We establish the following results on the asymptotic behaviour of U -statistics over RCE
matrices.

Theorem 2.2.5 (Main theorem). Let Y be a RCE matrix. Let h be a quadruplet kernel such
that E[h(Y(1,2;1,2))

2] <∞. Let (Uh
N)N≥1 be the sequence of U -statistics associated with h defined

in Definition 2.2.4. Let FN = σ((U
h
k,l, k ≥ mN , l ≥ nN)) and F∞ ∶= ⋂∞N=1FN . Set Uh

∞ =

E[h(Y(1,2;1,2)) ∣ F∞] and

V =
4
c

Cov(h(Y(1,2;1,2)), h(Y(1,3;3,4))∣F∞) +
4

1 − c
Cov(h(Y(1,2;1,2)), h(Y(3,4;1,3))∣F∞).

If P(V > 0) > 0, then
√
N(Uh

N −U
h
∞)

D
ÐÐÐ→
N→∞

W,

where W is a random variable with characteristic function ϕ(t) = E[exp(−1
2 t

2V )].
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Theorem 2.2.5 states that the limiting distribution of
√
N(Uh

N − U
h
∞) is a mixture of Gaus-

sians. V consists of two terms corresponding to the covariance of the kernel taken on two
quadruplets sharing one row or one column, conditional on F∞. The condition P(V > 0) > 0 is
used to avoid the case V = 0 almost surely, which is a degenerate case discussed in Section 2.4.
Since V is not constant in general, the limit distribution is an infinite mixture of Gaussians.
This expression is analogous to η2 in Theorem 4 of Eagleson and Weber (1978) for jointly ex-
changeable arrays and the covariance kernel in Theorems 2.1 and 3.4 of Davezies et al. (2021)
for jointly and separately exchangeable arrays. We see that if V is constant, then the asymp-
totic distribution is a simple Gaussian. One may observe that Uh

N and ∑ϕ∈S2
N
f(ϕY ) studied in

Corollary 19 of Austern and Orbanz (2022) are related as Uh
N = (mN !)−2

∑ϕ∈S2
mN

f(ϕY ) when
mN = nN and f(Y ) = h(Y(1,2;1,2)). Still the convergence rates given in Theorem 2.2.5 and
Corollary 19 of Austern and Orbanz (2022) (the proof of which is not given in the paper) are
inconsistent. From what we understand, Corollary 19 actually corresponds to a degenerate case
(V = 0) in Theorem 2.2.5. Next we identify a class of models where the limiting distribution of
√
N(Uh

N −U
h
∞) is a simple Gaussian.

Definition 2.2.6. Y is a dissociated matrix if and only if (Yij)1≤i≤m,1≤j≤n is independent of
(Yij)i>m,j>n, for all m and n.

In other words, Y is dissociated if submatrices that are not sharing any row or column
are independent. Now we claim the following extension to Theorem 2.2.5 for dissociated RCE
matrices.

Theorem 2.2.7. In addition to the hypotheses of Theorem 2.2.5, if Y is dissociated, then Uh
∞

and V are constant and
√
N(Uh

N −U
h
∞)

D
ÐÐÐ→
N→∞

N (0, V ),

More precisely,

1. Uh
∞ = E[h(Y(1,2;1,2))],

2. V = 4
c Cov(h(Y(1,2;1,2)), h(Y(1,3;3,4))) +

4
1−cCov(h(Y(1,2;1,2)), h(Y(3,4;1,3))).

This result can be more directly exploited for statistical applications, as the limiting dis-
tribution is much more simple. Another important result is the joint asymptotic normality of
U -statistics, which holds as long as Theorem 2.2.7 applies to each kernel separately and they
are linearly independent.

Theorem 2.2.8. Let Y be a RCE dissociated matrix. Let (h1, h2, ..., hn) be a vector of quadruplet
kernels such that

1. Theorem 2.2.7 applies for each kernel, i.e. E[hk(Y(1,2;1,2))
2] < ∞ and Uhk∞ and V hk are

as defined in Theorem 2.2.7 for each kernel hk, 1 ≤ k ≤ n,
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2. for t ∈ Rn, ∑n
k=1 tkhk ≡ 0 if and only if t = (0, ...,0).

Then

√
N

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Uh1
N

Uh2
N

...

Uhn
N

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Uh1∞

Uh2∞

...

Uhn
∞

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

D
ÐÐÐ→
N→∞

N (0,Σ),

with
Σ = (Chi,hj)1≤i,j≤n ,

where Chk,hℓ = limN→+∞NCov(Uhk
N , Uhℓ

N ) for all 1 ≤ k, ℓ ≤ n (and Chk,hk = V hk).

This theorem allows us to obtain the asymptotic normality of linear combinations of U -
statistics and more interestingly, the asymptotic normality of differentiable functions of U -
statistics (see Sect. 2.3.2).

Remark. Lemma 12 of Kallenberg (1999) already provided a strong law of large numbers for π-
exchangeable arrays, of which quadruplet kernels are a subcase. The following theorem rephrases
Kallenberg’s law of large numbers for quadruplet U -statistics and gives an additional precision
in the dissociated case for which we provide an alternative proof, as it is a natural consequence
of our proof of Theorems 2.2.5 and 2.2.7.

Theorem 2.2.9. Let Y be a RCE matrix. Let h be a quadruplet kernel. Let (Uh
N)N≥1 the

sequence of U -statistics associated with h defined in Definition 2.2.4. Let FN = σ((U
h
k,l, k ≥

mN , l ≥ nN)) and F∞ ∶= ⋂∞N=1FN . We have

Uh
N

a.s.
ÐÐÐ→
N→∞

E[h(Y(1,2;1,2)) ∣ F∞].

Furthermore, if Y is dissociated, then E[h(Y(1,2;1,2)) ∣ F∞] = E[h(Y(1,2;1,2))].

2.2.3. The Aldous-Hoover theorem

We shall explain Theorems 2.2.5 and 2.2.7 in the light of the Aldous-Hoover representation
theorem. Theorem 1.4 of Aldous (1981) states that for any RCE matrix Y , there exists a real
function f such that if we denote Y ∗ij = f(α, ξi, ηj , ζij), for 1 ≤ i, j < ∞, where the α, ξi, ηj and
ζij are i.i.d. random variables with uniform distribution over [0,1], then

Y
D
= Y ∗. (2.7)

It is possible to identify the role of each of the random variables involved in the representation
theorem. We notice that each Yij is determined by α, ξi, ηj and ζij . ζij is entry-specific while
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ξi is shared by all the entries involving the row i and ηj by the ones involving the column j.
Therefore, the ξi and ηj represent the contribution of each individual of type 1 and type 2 of the
network, i.e. each row and column of the matrix. These contributions are i.i.d., which makes
the network exchangeable. Finally, α is global to the whole network and shared by all entries.

Proposition 3.3 of Aldous (1981) states that if Y is dissociated, then Y ∗ can be written
without α, i.e. it is of the form Y ∗ij = f(ξi, ηj , ζij), for 1 ≤ i, j <∞. In this case, because the ξi,
ηj and ζij are i.i.d., averaging with the U -statistic over an increasing number of nodes nullifies
the contribution of each individual interaction (ζij) and node (ξi and ηj). In the general case,
i.e. when Y is not dissociated, then conditionally on α, Y is dissociated. It is easy to see that
the mixture of Gaussians from Theorem 2.2.5 results from this conditioning.

In practice, dissociated exchangeable random graph models are widely spread. Notably, a
RCE model is dissociated if and only if it can be written as a W -graph (or graphon), i.e. it is
defined by a distribution W depending on two parameters in [0,1] such that for 1 ≤ i, j <∞:

ξi, ηj
i.i.d.
∼ U[0,1]

Yij ∣ ξi, ηj ∼W(ξi, ηj),

see Diaconis and Janson (2008) for binary bipartite graphs, Lovász and Szegedy (2010) for an
extension to weighted graphs but in a unipartite setup. In this definition, it is easy to recognize
the variables from the representation theorem of Aldous-Hoover. We simply identify the ξi and
ηj , then it suffices to take ϕ−1

ξi,ηj
the inverse distribution function ofW(ξi, ηj) to see that defining

the dissociated RCE matrix Y ∗ such that Y ∗ij = f(ξi, ηj , ζij) ∶= ϕ
−1
ξi,ηj
(ζij) fulfills Y ∗ D= Y .

2.2.4. Proof of Theorem 2.2.5

To prove Theorem 2.2.5, we adapt the proof of Eagleson and Weber (1978) establishing the
asymptotic normality of sums of backward martingale differences. The definition of a backward
martingale is reminded in Appendix 2.B.

Theorem 2.2.10 (Eagleson and Weber, 1978). Let (Mn,Fn)n≥1 be a square-integrable reverse
martingale, V a F-measurable, a.s. finite, positive random variable. Denote M∞ ∶= E[M1 ∣ F∞]

where F∞ ∶= ⋂∞n=1Fn. Set Znk ∶=
√
n(Mk −Mk+1). If:

1. ∑∞k=n E[Z2
nk ∣ Fk+1]

P
ÐÐÐ→
n→∞

V (asymptotic variance),

2. for all ϵ > 0, ∑∞k=n E[Z2
nk1{∣Znk ∣>ϵ} ∣ Fk+1]

P
ÐÐÐ→
n→∞

0 (conditional Lindeberg condition),

then ∑∞k=nZnk =
√
n(Mn −M∞)

D
ÐÐÐ→
n→∞

W , where W is a random variable with characteristic
function ϕ(t) = E[exp(−1

2 t
2V )].
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Proof of Theorem 2.2.5. The three steps to apply Theorem 2.2.10 to (MN)N≥1 = (U
h
N)N≥1 are

to show that it is a backward martingale for a well chosen filtration and that it fulfills conditions
1 and 2. The expression of V is made explicit along the way. More precisely,

1. first, defining FN = σ((U
h
k,l, k ≥mN , l ≥ nN)), Proposition 2.C.1 states that (Uh

N ,FN)N≥1

is indeed a square-integrable reverse martingale ;
2. then, Proposition 2.D.1 implies that ∑∞K=N E[Z2

NK ∣ FK+1], where ZNK ∶=
√
N(UK −

UK+1), does converge to a random variable V with the desired expression ;
3. finally, the conditional Lindeberg condition is ensured by Proposition 2.E.1, since from

it, we deduce that for all ϵ > 0, ∑∞K=N E[Z2
NK1{∣ZNK ∣>ϵ} ∣ FK+1]

P
ÐÐÐ→
N→∞

0.

Hence, if V is positive, Theorem 2.2.10 can be applied to Uh
N and we obtain that

√
N(Uh

N −

Uh
∞)

D
ÐÐÐ→
N→∞

W , where W is a random variable with characteristic function ϕ(t) = E[exp(−1
2 t

2V )].
The proofs of Propositions 2.C.1, 2.D.1 and 2.E.1 are provided in Appendices 2.C, 2.D and 2.E
respectively.

2.2.5. Proof of Theorem 2.2.7

The proof of Theorem 2.2.7 relies on a Hewitt-Savage type zero-one law for events that are
permutable in our row-column setup. Therefore, it is useful to define first what a row-column
permutable event is. We remind the Aldous-Hoover representation theorem for dissociated RCE
matrices as stated earlier: if Y is a dissociated RCE matrix, then its distribution can be written
with (ξi)1≤i<mN

, (ηj)1≤j<nN
and (ζij)1≤i≤mN ,1≤j≤nN

arrays of i.i.d. random variables.

Then let us consider such arrays of i.i.d. random variables (ξi)1≤i<mN
, (ηj)1≤j<nN

and
(ζij)1≤i≤mN ,1≤j≤nN

. If we were to consider events depending only on them, there is no loss
of generality in using the product probability space (ΩN ,AN ,PN), where

ΩN = {(ω
ξ, ωη, ωζ

) ∶ ωξ
∈ RmN , ωη

∈ RnN , ωζ
∈ RmN nN} = RmN+nN+mN nN ,

AN = B(R)mN+nN+mN nN ,

PN = µ
mN+nN+mN nN .

We then define the action of a row-column permutation on an element of ΩN .

Definition 2.2.11. Let Φ = (σ1, σ2) ∈ SmN
× SnN

. The action of Φ on ω ∈ ΩN is defined by

Φω = (σ1ω
ξ, σ2ω

η, (σ1, σ2)ω
ζ)

where σ1ω
ξ = (ωξ

σ1(i))1≤i<mN
, σ2ω

η = (ωη
σ2(j))1≤j<nN

and (σ1, σ2)ω
ζ = (ωζ

σ1(i)σ2(j))1≤i<mN ,1≤j<nN

Definition 2.2.12. Let A ∈ AN . A is invariant by the action of SmN
× SnN

if and only if for
all Φ ∈ SmN

× SnN
, Φ−1A = A, i.e.

{ω ∶ Φω ∈ A} = {ω ∶ ω ∈ A} .
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Notation. In this section, we denote by EN the collection of events of AN that are invariant by
row-column permutations of size mN ×nN , i.e. Φ ∈ SmN

×SnN
. We denote E∞ ∶= ⋂∞n=1 EN , which

is the collection of events that are invariant by permutations of size mN × nN , for all N .

The following theorem is an extension of the Hewitt-Savage zero-one law to the row-column
setup.

Theorem 2.2.13. For all A ∈ E∞, P(A) = 0 or P(A) = 1.

The proof of Theorem 2.2.13 is given in Appendix 2.F. Now we use this result to derive
Theorem 2.2.7 from Theorem 2.2.5.

Proof of Theorem 2.2.7. In this proof, we specify the matrices over which the U -statistics are
taken, i.e. for a RCE matrix Y , we denote Uh

k,l(Y ) instead of Uh
k,l the U -statistic of size k × l

with kernel h taken on Y , given by formula (2.5), and analogously Uh
N(Y ) ∶= U

h
mN ,nN

(Y ) and
Uh
∞(Y ) ∶= E[h(Y(1,2;1,2)) ∣ F∞(Y )]. We denote also FN(Y ) ∶= σ((U

h
k,l(Y ), k ≥ mN , l ≥ nN))

which are sets of events depending on Y , and F∞(Y ) ∶= ⋂∞n=1FN(Y ).

Since Y is RCE and dissociated, Proposition 3.3 of Aldous (1981) states the existence of a
real function f such that for 1 ≤ i, j < ∞, Y ∗ij = f(ξi, ηj , ζij) and Y ∗

D
= Y , where ξi, ηj and ζij ,

for 1 ≤ i, j <∞ are i.i.d. random variables with uniform distribution on [0,1]. Therefore we can
consider such function f and these random variables, the product spaces (ΩN ,AN ,PN) and the
sets EN of invariant events defined earlier.

But FN(Y
∗) = σ((Uh

k,l(Y
∗), k ≥ mN , l ≥ nN)) ⊂ σ(U

h
N(Y

∗), ξi, ηj , ζij , i > mN , j > nN), so
for all N , FN(Y

∗) ⊂ EN . It follows that F∞(Y ∗) ⊂ E∞, so U∞(Y ∗) is E∞-measurable. Theo-
rem 2.2.13 states that all the events in E∞ happen with probability 0 or 1, so it ensures that
Uh
∞(Y

∗) = E[h(Y ∗{1,2;1,2}) ∣ F∞(Y
∗)] = E[h(Y ∗{1,2;1,2})] is constant. Moreover, since the distribu-

tion of Uh
N(Y ) is the same as this of Uh

N(Y
∗), we can conclude that Uh

∞(Y ) = E[h(Y(1,2;1,2)) ∣

F∞(Y )] = E[h(Y(1,2;1,2))].

Likewise, we deduce that E[h(Y(1,2;1,2))h(Y(1,3;3,4)) ∣ F∞(Y )] = E[h(Y(1,2;1,2))h(Y(1,3;3,4))]

and E[h(Y(1,2;1,2))h(Y(3,4;1,3)) ∣ F∞(Y )] = E[h(Y(1,2;1,2))h(Y(3,4;1,3))] which gives the desired
result for V . Thus we conclude that W of Theorem 2.2.5 follows a Gaussian distribution of
variance V .
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2.2.6. Proof of Theorem 2.2.8

The proof of Theorem 2.2.8 relies on the Cramér-Wold theorem (see Thm. 29.4 of Billings-
ley, 1995). If is enough to show that any linear combination of U -statistics converges to the
corresponding linear combination of their limits.

Proof of Theorem 2.2.8. Let (Zhk)1≤k≤n be a vector of random variables following a centered
multivariate Gaussian distribution with covariance matrix Σ defined in the theorem. Then
Zhk ∼ N (0, V hk) for all 1 ≤ k ≤ n and Cov(Zhi , Zhj) = Chi,hj for all 1 ≤ i ≤ n and 1 ≤ j ≤ n.

For some t = (t1, t2, ..., tn) ∈ Rn, we set ht ∶= t1h1 + t2h2 + ... + tnhn. First, assume that
t ≠ (0, ...,0). Then by hypothesis, ht /≡ 0, therefore ∑n

k=1 tkU
hk
N = Uht

N is a U -statistic with
quadruplet kernel ht. Using Cauchy-Schwarz inequality and the fact that E[hk(Y(1,2;1,2))

2] <∞

for all 1 ≤ k ≤ n, we have furthermore

E[ht(Y(1,2;1,2))
2
] =

n

∑
k=1

t2kE[hk(Y(1,2;1,2))
2
] + 2 ∑

1≤k≠ℓ≤n
tktℓE[hk(Y(1,2;1,2))hℓ(Y(1,2;1,2))],

≤
n

∑
k=1

t2kE[hk(Y(1,2;1,2))
2
] + 2 ∑

1≤k≠ℓ≤n
tktℓ
√

E[hk(Y(1,2;1,2))2]E[hℓ(Y(1,2;1,2))2],

< ∞.

Therefore, Theorem 2.2.7 also applies for Uht
N and

√
N(Uht

N −U
ht
∞ )

D
ÐÐÐ→
N→∞

N (0, V ht), where Uht
∞ =

∑
n
k=1 tkU

hk∞ and V ht = ∑
n
k=1∑

n
ℓ=1 tktℓC

hk,hℓ = tT Σt with Chk,hk = V hk > 0 since Theorem 2.2.7
applies. This means that

√
N(Uht

N −U
ht
∞ ) =

√
N ∑n

k=1 tk(U
hk
N −U

hk∞ )
D
ÐÐÐ→
N→∞

∑
n
k=1 tkZ

hk .

Now assume that t = (0, ...,0). Then ht ≡ 0 so Uht
N = 0 = ∑n

k=1 tkZ
hk . Therefore,

√
N(Uht

N −

Uht
∞ ) =

√
N ∑n

k=1 tk(U
hk
N −U

hk∞ )
D
ÐÐÐ→
N→∞

∑
n
k=1 tkZ

hk is still true.

We have proven that
√
N(Uht

N − U
ht
∞ )

D
ÐÐÐ→
N→∞

∑
n
k=1 tkZ

hk for all t ∈ Rn, so we can fi-
nally apply the Cramér-Wold theorem (Thm. 29.4 of Billingsley, 1995) which states that
√
N (Uhk

N −U
hk∞ )1≤k≤n

converges jointy in distribution to (Zhk)1≤k≤n, which is a centered multi-
variate Gaussian with covariance matrix Σ, so this concludes the proof.

2.2.7. Proof of Theorem 2.2.9

The proof for the first part of the theorem can be derived from the proof of Proposi-
tion 2.C.1, without needing the hypothesis E[h(Y(1,2;1,2))

2] < ∞. Indeed, it is enough to show
that (Uh

N ,FN)N≥1 is a (not necessarily square-integrable) backward martingale and to apply
Theorem 2.B.3.
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As for the dissociated case, E[h(Y(1,2;1,2)) ∣ F∞] = E[h(Y(1,2;1,2))] is ensured by the proof of
Theorem 2.2.7.

2.3. Applications

In this section, we illustrate how the results from the previous section can be used for sta-
tistical inference for network data through different examples. First, we introduce the Bipartite
Expected Degree Distribution (BEDD) models, a family of RCE models and we show how The-
orems 2.2.5 and 2.2.7 apply. Then, we detail three examples to show how one might exploit
the U -statistics properties to analyze networks. In the first example, we use different quadru-
plet kernels to estimate the row heterogeneity of a network, with the help of the delta-method.
Next, we extend this example to build a statistical test to compare the row heterogeneity of two
networks. In the last example, we use U -statistics to estimate the frequency of network motifs.

2.3.1. The BEDD model

General model As examples of models for RCE matrices, we consider the family of the BEDD
models, which are weighted, bipartite and exchangeable extensions of the Expected Degree
Sequence model (Chung and Lu, 2002; Ouadah et al., 2022). For binary graphs, the degree of
a node is the number of edges that stem from it. For weighted graphs, the equivalent notion is
the sum of the weights of these edges. It is sometimes called node strength (Barrat et al., 2004),
but we will simply refer to it as node weight. A BEDD model draws the node weights from
two distributions, characterised by càdlàg, non-decreasing and bounded real functions f and g

of [0,1] → R+. The expected edge weights Yij are then proportional to the expected weights of
the involved nodes. A BEDD model can be written in a hierarchical form

ξi, ηj
iid
∼ U[0,1]

Yij ∣ ξi, ηj ∼ L(λf(ξi)g(ηj)).
(2.8)

where given any real number µ ≥ 0, we denote by L(µ) a family of probability distributions with
expectation µ and finite variance, λ is a positive real number and f and g are normalized by the
condition ∫ f = ∫ g = 1. For a graph of size m × n, conditionally to λ, ξi and ηj , the expected
weight of the i-th row is nλf(ξi) and the expected weight of the j-th column is mλg(ηj).
Consequently, λ is the mean intensity of the network. One can define different BEDD models by
specifying different families of distributions L. For a family L, we refer to the L-BEDD model
(e.g. Poisson-BEDD or Bernoulli-BEDD).

Furthermore, we define two versions of BEDD models:
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Version 1 λ is constant,

Version 2 λ is a random variable.

By construction, the BEDD models are RCE, so Theorem 2.2.5 can be applied to matrices
Y generated by these two versions of BEDD models. Theorem 2.2.7 only applies to Version
1, where the matrix is dissociated. Indeed, we see that in both models conditionally on λ,
the expected mean of the interactions of any submatrix is λ. Therefore any 2 submatrices are
independent if λ is constant. We could also have noticed that λ is determined by the α from the
representation theorem of Aldous-Hoover, see equation (2.7). As a remark, it is straightforward
that unlike Version 2, Version 1 of BEDD models can be written as a W -graph model as in
Formula (2.2.3), setting W(ξi, ηj) ∶= L(λf(ξi)g(ηj)).

Since Theorem 2.2.7 only applies to Version 1, we will be only considering this version in the
rest of the article.

Definition 2.3.1. Given a family of distributions L(µ) a family of probability distributions with
expectation µ and finite variance, a L-BEDD model is a semi-parametric model described by the
triplet Θ = (λ, f, g) where

1. λ ∈ R,

2. f and g are real functions f and g of [0,1] → R+ which are bounded, càdlàg, non-
decreasing and normalized with ∫ f = ∫ g = 1.

We call Θ the BEDD parameters and the matrix Y generated by a L-BEDD model with these
parameters is written Y ∼ L-BEDD(Θ) and is described by (2.8), for all (i, j) ∈ N2.

In this definition, the normalizing constraint on ∫ f = ∫ g = 1 ensures that E[Yij] = λ for all
(i, j) ∈ N2. The boundedness of f and g ensures that the variables f(ξi) and g(ηj) are bounded
and their moments exist. In the binary case (Bernoulli-BEDD), it also puts a condition on
λ. Since P(Yij = 1 ∣ ξi, ηj) = λf(ξi)g(ηj), the condition λ ≤ ∥f∥−1

∞ ∥g∥
−1
∞ must hold. The non-

decreasing and càdlàg conditions are similar to the condition of Bickel and Chen (2009) for their
random graph model and ensures the identifiability of the model since otherwise, f and g could
be replaced with any f ○π1 and g ○π2, where π1 and π2 are measure-preserving transformations.

Identifiability by a quadruplet In addition to being a dissociated RCE model, the BEDD
models are particularly well adapted to use of quadruplet U -statistics. In this paragraph, we
show that for some choices of L such as the Poisson distribution, the model can be recovered by a
single quadruplet. We use the following two theorems of which proofs are given in Appendix 2.G.
The first theorem implies that the functions f and g of the BEDD models are characterised by
their moments Fk ∶= ∫ f

k and Gk ∶= ∫ g
k.
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Theorem 2.3.2. Let Θ = (λ, f, g) be BEDD parameters and Y ∼ L-BEDD(Θ) for some family
of distributions L. The distribution of Y is uniquely determined by λ, (Fk)k≥1 and (Gk)k≥1,
where Fk ∶= ∫ f

k and Gk ∶= ∫ g
k for all k ≥ 1.

Now we specify an assumption on the family of distributions L(µ), under which a quadruplet
identifies the parameters Θ = (λ, f, g) of a BEDD model.

Assumption 2.3.3. For the family of distributions L(µ), there exists a sequence of functions
(Ψk)k≥1 such that if a random variable X ∼ L(µ), then for every k ≥ 1,

E[Ψk(X)] = µ
k.

This assumption holds for many usual distributions families such as the Poisson or the
Binomial distributions. As an example, if X follows a Poisson distribution, we have Ψk(X) =

X(X − 1)...(X − k + 1). This assumption does not hold for the Bernoulli distribution, as if
X ∼ Bernoulli(µ), for any function φ, E[φ(X)] = µφ(1). This assumption is a sufficient condition
to be able to recover the BEDD parameters from the joint distribution of a quadruplet.

Theorem 2.3.4. If Assumption 2.3.3 holds for the family of distributions L(µ), then for all
k ∈ N, Fk and Gk are uniquely determined by the joint distribution of a quadruplet.

This theorem suggests that all the BEDD information is contained in the distribution of
a quadruplet, therefore it is possible to extract any information only with quadruplet kernels.
Quadruplet U -statistics are then especially of interest.

2.3.2. Heterogeneity in the row weights of a network

In this first example, we are interested in evaluating the heterogeneity of the row weights of a
network. In the BEDD models, conditional to the latent variables (ξi)1≤i≤m following a uniform
distribution on [0,1], the expected weights of the row nodes are given by the (f(ξi))1≤i≤m, as
seen in Section 2.3.1. Therefore, the heterogeneity of the rows, i.e. the variance of the expected
weight of a row node can be quantified by F2 ∶= ∫

1
0 f

2(u)du. In the example of an interaction
network, if f is constant, i.e. f ≡ 1 and F2 = 1, then the expected weight is constant for all rows
and the row weight distribution is homogeneous, with all the row individuals having around the
same number of interactions. Besides, the higher F2 is, the more this distribution is unbalanced.
In ecology, a large value of F2 indicates a strong distinction between generalist (with high degree)
and specialists (with low degree) species.
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F2 can be estimated using θ̂N ∶= U
h1
N /U

h2
N where Uh1

N and Uh2
N are the U -statistics based on

the quadruplet kernels h1 and h2 defined as

h1(Y(i1,i2;j1,j2)) =
1
2
(Yi1j1Yi1j2 + Yi2j1Yi2j2),

and
h2(Y(i1,i2;j1,j2)) =

1
2
(Yi1j1Yi2j2 + Yi2j1Yi1j2).

Proposition 2.3.5. Let θ̂N ∶= U
h1
N /U

h2
N be defined as above. Then

√
N

V δ
(θ̂N − F2)

D
ÐÐÐ→
N→∞

N (0,1), (2.9)

where
V δ
=

1
c
(F4 + F2(4F 2

2 − F2 − 4F3)) (2.10)

and for all k > 0, Fk ∶= ∫ f
k and Gk ∶= ∫ g

k.

This result comes from the composition of the asymptotic normality of two U -statistics.
In the following, we show how to obtain equations (2.9) and (2.10). First, we see that
E[h1(Y(i1,i2;j1,j2))] = λ

2F2 and E[h2(Y(i1,i2;j1,j2))] = λ
2. So applying Theorem 2.2.7 succes-

sively to Uh1
N and Uh2

N gives the following results (V h1 and V h2 are derived in Lemmas 2.H.3
and 2.H.4):

√
N

V h1
(Uh1

N − λ
2F2)

D
ÐÐÐ→
N→∞

N (0,1), (2.11)

and √
N

V h2
(Uh2

N − λ
2
)

D
ÐÐÐ→
N→∞

N (0,1), (2.12)

where
V h1 =

λ4

c
(F4 − F

2
2 ) +

4λ4

1 − c
F 2

2 (G2 − 1), (2.13)

and
V h2 =

4λ4

c
(F2 − 1) + 4λ4

1 − c
(G2 − 1). (2.14)

To combine the results (2.11) and (2.12), we apply Theorem 2.2.8 to (h1, h2). We find that

√
N
⎛

⎝

⎛

⎝

Uh1
N

Uh2
N

⎞

⎠
−
⎛

⎝

λ2F2

λ2
⎞

⎠

⎞

⎠

D
ÐÐÐ→
N→∞

N (0,Σ), (2.15)

with

Σ =
⎛

⎝

V h1 Ch1,h2

Ch1,h2 V h2

⎞

⎠
,

where Ch1,h2 = 2λ4c−1(F3 − F2) + 4λ4(1 − c)−1F2(G2 − 1). The derivation of Ch1,h2 is given by
Lemma 2.H.5. We suggest two methods to derive the weak convergence result for θ̂N = U

h1
N /U

h2
N .
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First method: the delta-method The first-order Taylor expansion of ϕ(Uh1
N , Uh2

N ) =

Uh1
N /U

h2
N = θ̂N at the point (Uh1

N , Uh2
N ) = (λ

2F2, λ
2) is

θ̂N − F2 = ∇ϕ(λ
2F2, λ

2
)

T ⎛

⎝

⎛

⎝

Uh1
N

Uh2
N

⎞

⎠
−
⎛

⎝

λ2F2

λ2
⎞

⎠

⎞

⎠
+ oP

⎛

⎝

XXXXXXXXXXXX

⎛

⎝

Uh1
N

Uh2
N

⎞

⎠
−
⎛

⎝

λ2F2

λ2
⎞

⎠

XXXXXXXXXXXX

⎞

⎠

where ∇ϕ is the gradient of ϕ and ∇ϕ(Uh1
N , Uh2

N )
T = (1/Uh2

N ,−Uh1
N /(U

h2
N )

2).

As the result of (2.15), the delta-method (see Chapter 3 of Van der Vaart, 2000) gives
equation (2.9) with

V δ
= ∇ϕ(λ2F2, λ

2
)Σ∇ϕ(λ2F2, λ

2
)

T
=

1
λ4V

h1 −
2F2
λ4 C

h1,h2 +
F 2

2
λ4 V

h2 ,

which is equation (2.10).

Second method The delta-method is a generic method that applies to all differentiable func-
tions ϕ. However, for our particular case, there is another way to find the same confidence
intervals without using the delta-method. Let t ∶= (1,−F2)

T . One could have noticed that (2.15)
also implies

√
N

V t
tT
⎛

⎝

⎛

⎝

Uh1
N

Uh2
N

⎞

⎠
−
⎛

⎝

λ2F2

λ2
⎞

⎠

⎞

⎠

D
ÐÐÐ→
N→∞

N (0,1),

where V t ∶= tT Σt = V h1 − 2F2C
h1,h2 + F 2

2 V
h2 = λ4V δ. This can be rewritten

√
N

V δ

Uh2
N

λ2 (θ̂N − F2)
D
ÐÐÐ→
N→∞

N (0,1). (2.16)

Since Uh2
N /λ

2 P
ÐÐÐ→
N→∞

1, then Slutsky’s theorem yields equations (2.9) and (2.10).

Confidence intervals In order to exploit equations (2.9) and (2.10), we have to estimate the
remaining unknown quantities λ2, G2, F3 and F4. We use the kernels h3, h4, h5 and h6 listed
in Table 2.1. Using equation (2.10) and two additional U -statistics Uh5

N and Uh6
N based on the

kernels h5 and h6 defined in Table 2.1, we build V̂ δ
N a consistent estimator for V δ, defined as

V̂ δ
N =

1
c

⎛

⎝

Uh4
N

(Uh3
N )

2
+
Uh1

N

Uh2
N

⎛

⎝
4
(Uh1

N )
2

(Uh2
N )

2
−
Uh1

N

Uh2
N

− 4
Uh6

N

Uh5
N Uh3

N

⎞

⎠

⎞

⎠
. (2.17)

Finally, it follows from Slutsky’s theorem that
¿
Á
ÁÀ

N

V̂ δ
N

(θ̂N − F2)
D
ÐÐÐ→
N→∞

N (0,1), (2.18)
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From this result, one can derive the following asymptotic confidence interval at level α ∈]0,1[
for F2 using the (1 − α/2)-th percentile q1−α/2 of the standard normal distribution: for N ≥ 1,

CIδ
F2(α,N) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

θ̂N − q1−α/2

¿
Á
ÁÀ V̂ δ

N

N
, θ̂N + q1−α/2

¿
Á
ÁÀ V̂ δ

N

N

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (2.19)

h h(Y(i1,i2;j1,j2)) E[h(Y(i1,i2;j1,j2))]

h1
1
2
(Yi1j1Yi1j2 + Yi2j1Yi2j2) λ2F2

h2
1
2
(Yi1j1Yi2j2 + Yi1j2Yi2j1) λ2

h3
1
2
(Yi1j1Yi2j1 + Yi1j2Yi2j2) λ2G2

h4
1
2
((Y 2

i1j1 − Yi1j1)(Y
2

i1j2 − Yi1j2) + (Y
2

i2j1 − Yi2j1)(Y
2

i2j2 − Yi2j2)) λ4F4G
2
2

h5
1
4
(Yi1j1 + Yi1j2 + Yi2j1 + Yi2j2) λ

h6
1
4
(Yi1j1Yi1j2(Yi1j1 + Yi1j2 − 2) + Yi2j1Yi2j2(Yi2j1 + Yi2j2 − 2)) λ3F3G2

Table 2.1 – Kernels h1 to h6 and their expectations.

Simulations To illustrate this example, we have simulated networks with the Poisson-BEDD
model. We have chosen power functions for f and g, i.e. we have set αf and αg in [0,+∞[ and
f(u) = (αf + 1)uαf and g(v) = (αg + 1)vαg . Therefore, the values of F2 and G2 can be set by αf

and αg. The constant c is set at 0.5, so we have considered square matrices (m = n). Figure 2.1
represents the frequency with which 2 confidence intervals, built with respectively equations (2.9)
and (2.18) for α = 0.05, contain the true value of F2. The curve associated with V δ suggests that
√
N(θ̂N − F2) becomes close to its limiting distribution for N ≳ 250. For smaller values of N ,

the frequencies are significantly higher than 0.95, so the confidence intervals are slightly larger
than they should. The curve associated with V̂ δ

N suggests that V̂ δ
N underestimates V δ, but using

Slutsky to plug in V̂ δ
N for V δ in (2.18) still leads to acceptable frequencies that converge when N

grows, especially for N ≳ 250. Figure 2.2 represents the empirical distribution of θ̂N for different
sizes N . It confirms that

√
N(θ̂N −F2) converges quickly to a normal distribution with variance

V δ.
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Figure 2.1 – Estimation of F2: Frequency of the confidence intervals that contain the
true value of F2 for different values of N (on a logarithmic scale). For each N ∈

{8,16,32,64,128,256,512,1024,2048}, we simulate K = 1000 networks with λ = 1, F2 = 3, G2 = 2.
For each simulated network, we estimate F2 with the estimator θ̂N and at level 1 − α = 0.95,
we build the asymptotic confidence intervals from the weak convergence results: [vdt] built
from (2.9) (true value of V δ) and [vd] built from (2.18) (estimated value of V δ by V̂ δ

N ). The
horizontal dashed lines represent the confidence interval at level 0.95 of the frequency Z =X/K,
if X follows the binomial distribution with parameters K and α.
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Figure 2.2 – Estimation of F2: Distribution of θ̂N for different values of N . For each N ∈

{8,16,32,64,128,256,512,1024,2048}, we simulate K = 1000 networks with λ = 1, F2 = 3,
G2 = 2. For each simulated network, we estimate F2 with the estimator θ̂N . The empirical
distributions (solid red lines) are interpolated using the density() function from base R stats
package. The dashed curves in blue correspond to the normal distribution densities with mean
F2 = 3 and variance V δ/N . Under each plot, the value of the Kolmogorov-Smirnov test statistic
D between the empirical distribution of θ̂N and the normal distribution with mean F2 = 3 and
variance V δ/N is given. D = supx∣Femp(x) − F (x)∣ where Femp is the empirical c.d.f. of θ̂N and
F (x) the c.d.f. of the normal distribution with mean F2 = 3 and variance V δ/N .
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2.3.3. Network comparison

Some methods have been developed to compare networks. Network statistics, graph spectra,
network motifs or graph alignment methods can be used to build a distance (or similarity scores)
between two networks (Emmert-Streib et al., 2016; Tantardini et al., 2019). In the context of
random networks, fewer comparison methods rely on generative random graph models and they
are relatively recent (Asta and Shalizi, 2015; Maugis et al., 2020). A model-based approach
offers two advantages. First, by suggesting a distribution on the networks, one might be able to
design a distance with known distribution and therefore use statistical tests to compare networks.
Second, the use of a generative model makes it considerably easier to interpret, one can use to
the model parameters to design a suitable distance to compare the networks, giving insights into
the underlying process generating them. Such ability to interpret is particularly interesting in
applications such as ecology, where it is crucial to understand how and why the networks differ
(Pellissier et al., 2018). In this section, we show how one can extend the usage of U -statistics
to network comparison, providing a framework for model-based network comparison.

In the previous example, our analysis has been carried out on a single network. Now,
consider two independent networks Y A and Y B and we wish to compare their row heterogeneity.
Assume that they are respectively generated by the BEDD parameters ΘA = (λA, fA, gA) and
ΘB = (λB, fB, gB). Then, each network is associated with their respective values FA

2 and
FB

2 . The data consists in two observed networks Y A
NA

and Y B
NB

, which are assumed to be
extracted from the first mA (respectively mB) rows and nA (respectively nB) columns of the
infinite matrices YA and YB. We would like to perform the following test: H0 ∶ F

A
2 = F

B
2 vs.

H1 ∶ F
A
2 ≠ F

B
2 using the two observed networks.

General method Let N ∶= NA + NB. Suppose that NA/N ÐÐÐÐ→
N→+∞

ρ ∈]0,1[. Then one

can simply notice that δ̂N(Y
A, Y B) ∶= θ̂NA

(Y A) − θ̂NB
(Y B), where θ̂N(Y ) is the estimator of

Proposition 2.3.5 taken on the matrix Y , is still asymptotically normal from equation (2.9)
√

N

V (ΘA,ΘB)
(δ̂N(Y

A, Y B
) − (FA

2 − F
B
2 ))

D
ÐÐÐ→
N→∞

N (0,1),

with V (ΘA,ΘB) = V δ(ΘA)/ρ + V δ(ΘB)/(1 − ρ) and for BEDD parameters Θ, V δ(Θ) is given
by (2.10).

Using the estimators V̂ δ
N stemming from the delta-method (2.17), we build V̂N(Y

A, Y B) a
consistent estimator for V (ΘA,ΘB)

V̂N(Y
A, Y B

) =
1
ρ
V̂ δ

N(Y
A
) +

1
1 − ρ

V̂ δ
N(Y

B
).
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Hence, Slutsky’s theorem ensures that
¿
Á
ÁÀ N

V̂N(Y A, Y B)
(δ̂N(Y

A, Y B
) − (FA

2 − F
B
2 ))

D
ÐÐÐ→
N→∞

N (0,1).

In this example, we consider the statistical test H0 ∶ F
A
2 = F

B
2 vs. H1 ∶ F

A
2 ≠ F

B
2 . So we use

the test statistic

ZN(Y
A, Y B

) =

¿
Á
ÁÀ N

V̂N(Y A, Y B)
δ̂N(Y

A, Y B
), (2.20)

for which Slutsky’s theorem applies

ZN(Y
A, Y B

) −

¿
Á
ÁÀ N

V̂N(Y A, Y B)
(FA

2 − F
B
2 )

D
ÐÐÐÐ→
N→+∞

N (0,1).

Under H0, ZN(Y
A, Y B)

D
ÐÐÐÐ→
N→+∞

N (0,1) which allows us to build asymptotic acceptance

intervals for this test at level α with the (1 − α/2)th percentile q1−α/2 of the standard normal
distribution:

I(α) = [−q1−α
2
, q1−α

2
].

Simulations Figure 2.3 shows simulation results for this test. Once again, we consider net-
works generated by the Poisson-BEDD model with power law functions f and g. To perform
the test, we generate couples of observed networks (Y A

NA
, Y B

NB
) with fixed and identical λA = λB

and gA = gB. fA is also fixed, but we let fB vary by setting the parameter αfB of the power
law, which is used to set FB

2 . The empirical power for this test with varying FB
2 is evaluated

for several values of N . It is compared with the asymptotic theoretical power ψN(ΘA,ΘB) for
this test. Let µN(ΘA,ΘB) ∶=

√
N

V (ΘA,ΘB)(F
A
2 − F

B
2 ). If a random variable Z̃N is such that

Z̃N − µN(ΘA,ΘB)
D
∼ N (0,1), then ψN(ΘA,ΘB) = P (Z̃N ∈ I(α)), so it can be computed with

ψN(ΘA,ΘB
) = F(ΘA,ΘB) (q1−α

2
) − F(ΘA,ΘB) (−q1−α

2
) (2.21)

where F(ΘA,ΘB)(t) is the cumulative distribution function of a Gaussian variable with mean
µN(ΘA,ΘB) and variance 1. We notice that the empirical power becomes very close to the
asymptotic theoretical power as N grows, which suggests that this test works well for networks
with N ≳ 100.
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Figure 2.3 – Comparison of F2 for two networks: Power of the test H0 ∶ F
A
2 = F

B
2 vs. H1 ∶

FA
2 ≠ F

B
2 using the statistic ZN(Y

A, Y B) defined by (2.20). We set λA = λB = 1, GA
2 = G

B
2 = 2,

cA = cB = 0.5. The value of FA
2 is fixed at 3. Only N and FB

2 will vary. Several values of
FB

2 are considered between 1 and 5. For each N ∈ {32,64,128,256,512,1024}, for each FB
2 , we

generate K = 200 couple of networks of same size NA = NB = N/2 with respective F2 values
FA

2 and FB
2 . On each couple of networks (Y A, Y B), we compute ZN(Y

A, Y B) and we reject
the hypothesis H0 if ZN(Y

A, Y B) /∈ I(α). The empirical power (solid lines) is the frequency
with which the hypothesis is admitted among the K simulations. The theoretical power (dashed
lines) is the function ψN(ΘA,ΘB), which only depends on FB

2 since the other parameters are
constant, computed with equation (2.21).

2.3.4. Motif frequencies

A motif is a small-size subgraph. The frequencies of occurences of motifs (sometimes called
network moments) are widely studied in network theory. Motifs frequencies have known asymp-
totic distribution under many generative models, so they can be used to analyze binary networks
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(Stark, 2001; Picard et al., 2008; Reinert and Röllin, 2010; Bickel et al., 2011; Bhattacharyya
and Bickel, 2015; Levin and Levina, 2019; Maugis et al., 2020; Naulet et al., 2021; Ouadah et al.,
2022). Many probabilistic graph models also rely on motif frequencies, such as the Exponential
Random Graph Model (Frank and Strauss, 1986) or the dk-random graphs (Orsini et al., 2015).
For many real networks, one can interpret the frequencies of certain motifs, see examples for
transcriptional networks (Shen-Orr et al., 2002), protein networks (Pržulj et al., 2004), social
networks (Bearman et al., 2004), evolutionary trait networks (Przytycka, 2006), ecological food
webs (Bascompte and Melián, 2005; Stouffer et al., 2007), ecological mutualistic networks (Baker
et al., 2015; Simmons et al., 2019).

It naturally arises that frequencies of bipartite motifs of size 2 × 2 can be expressed as
quadruplet U -statistics and can be integrated in our framework. If Y is a binary adjacency
matrix, then one can count the motifs using a kernel and obtain statistical guarantees. For
example, the motif represented in Figure 2.4 can be counted with the kernel

h7(Y(i1,i2;j1,j2)) =
1
4
(Yi1j1Yi1j2Yi2j1(1 − Yi2j2) + Yi1j1Yi1j2Yi2j2(1 − Yi2j1)

+ Yi1j1Yi2j1Yi2j2(1 − Yi1j2) + Yi1j2Yi2j1Yi2j2(1 − Yi1j1)).

Figure 2.4 – Motif counted by Uh7
N . The circles and the squares represent the two types of

nodes of a bipartite network. Assuming that the circles correspond to the rows and the squares
to the columns of the adjacency matrix, then the submatrix associated to this subgraph is

Y(1,2;1,2) =
⎛

⎝

1 1
0 1
⎞

⎠
(figure taken from Ouadah et al., 2022).

Theorem 2.2.7 shows that the associated U -statistic Uh7
N converges to the theoretical fre-

quency T of this motif given the network model and it is asymptotically normal. Suppose
Y ∼ Bernoulli-BEDD(Θ), where Θ = (λ, f, g) are BEDD parameters, then

√
N

V h7
(Uh7

N − T (Θ))
D
ÐÐÐ→
N→∞

N (0,1). (2.22)
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where following derivations given in Lemma 2.H.6, T (Θ) = λ3F2G2(1 − λF2G2) and

V h7 =
4λ6

c
G2

2 [λ
2F4F

2
2G

2
2 − λF4F2G2 − λF3F

2
2G2 +

1
2
F3F2 +

1
4
F4 +

1
4
F 3

2 ]

+
4λ6

1 − c
F 2

2 [λ
2G4G

2
2F

2
2 − λG4G2F2 − λG3G

2
2F2 +

1
2
G3G2 +

1
4
G4 +

1
4
G3

2]

−
4

c(1 − c)
(λ3F2G2(1 − λF2G2))

2
.

The quantities λ, (Fk)k≥1 and (Gk)k≥1 appearing in the expression of the asymptotic variance
V h7 can be consistently estimated using U -statistics of larger subgraphs. For any (p, q), define
the kernel hp,q of submatrices Y(i1,...,ip;j1,...,jq) of size p × q as follows:

hp,q(Y(i1,...,ip;j1,...,jq)) =
p

∏
u=1

q

∏
v=1

Yiujv .

Then the U -statistic associated to hp,q is

U
hp,q

N = (
mN

p
)
−1
(
nN

q
)
−1

∑
1≤i1<...<ip≤mN

∑
1≤j1<...<jq≤nN

hp,q(Y(i1,...,ip;j1,...,jq)).

Lemma 2.H.7 states that E[h1,q(Y(1;1,...,q))] = λ
qFq and E[hp,1(Y(1,...,p;1))] = λ

pGp. Since Y
is a RCE matrix, Kallenberg’s law of large number (Lem. 12 of Kallenberg, 1999) applies to
these U -statistics and U

h1,q

N

a.s.
ÐÐÐ→
N→∞

λqFq and U
hp,1
N

a.s.
ÐÐÐ→
N→∞

λpGp.

Using these consistent estimators for λ, and the (Fk)k≥1 and (Gk)k≥1, we build an example
of consistent estimator for V h7

V̂N =
4(Uh2,1

N )2

c

⎡
⎢
⎢
⎢
⎢
⎣

U
h1,4
N (U

h1,2
N )2(U

h2,1
N )2

(U
h1,1
N )8

−
U

h1,4
N U

h1,2
N U

h2,1
N

(U
h1,1
N )5

−
U

h1,3
N (U

h1,2
N )2U

h2,1
N

(U
h1,1
N )6

+
1
2
U

h1,3
N U

h1,2
N

(U
h1,1
N )3

+
1
4
(U

h1,4
N )4

(U
h1,1
N )2

+
1
4
(U

h1,2
N )3

(U
h1,1
N )4

⎤
⎥
⎥
⎥
⎥
⎦

+
4(Uh1,2

N )2

1 − c

⎡
⎢
⎢
⎢
⎢
⎣

U
h4,1
N (U

h2,1
N )2(U

h1,2
N )2

(U
h1,1
N )8

−
U

h4,1
N U

h2,1
N U

h1,2
N

(U
h1,1
N )5

−
U

h3,1
N (U

h2,1
N )2U

h1,2
N

(U
h1,1
N )6

+
1
2
U

h3,1
N U

h2,1
N

(U
h1,1
N )3

+
1
4
(U

h4,1
N )4

(U
h1,1
N )2

+
1
4
(U

h2,1
N )3

(U
h1,1
N )4

⎤
⎥
⎥
⎥
⎥
⎦

−
4

c(1 − c)
(Uh7

N )
2.

This expression may seem complex at first, however it is computationally simple as one only
needs to compute Uhp,1

N for 1 ≤ p ≤ 4 and U
h1,q

N for 1 ≤ q ≤ 4 which can be easily done (see
Appendix 2.I).
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From Slutsky’s theorem, it follows that
√

N

V̂N

(Uh7
N − T (Θ))

D
ÐÐÐ→
N→∞

N (0,1). (2.23)

This result can be used to build asymptotic confidence intervals for the motif frequency T (Θ),
like in the previous examples of Sections 2.3.2 and 2.3.3.

Simulations We simulate networks with the Bernoulli-BEDD model, with power law functions
for f and g, similar to which of previous examples. For αf and αg in [0,+∞[, f(u) = (αf +1)uαf

and g(v) = (αg + 1)vαg . αf and αg can be used to set F2 and G2. αf and αg also determine the
maximum value for λ, as we should have λ ≤ λM = (f(1)g(1))−1 = (αf + 1)−1(αg + 1)−1. The c
constant remains at 0.5.

Figure 2.5 represents the frequency with which the 2 confidence intervals built from equa-
tions (2.22) and (2.23) contain the true value of the target motif frequency T (Θ). We see that as
N grows larger than 250, the frequency becomes very close to 0.95, although the variance is still
underestimated until N ≈ 2000. In contrast to the example of Section 2.3.2, the frequencies for
N smaller than 16 are very low (0.5 and lower). This is an expected result as the estimator Uh7

N

counts the motifs contained in the networks. The maximum number of motifs in the network
is MN = (

mN

2 )(
nN

2 ). For a fixed N , Uh7
N can only take discrete values in (kM−1

N )0≤k≤MN
. The

support of Uh7
N is more and more restricted as N becomes smaller, which makes the empirical

distribution of Uh7
N more dissimilar from a Gaussian distribution.

This is also reflected in Figure 2.6 as the discrete support still appears very clearly in the
yet smoothed distribution density of Uh7

N for N = 8 and N = 16. Nevertheless, we see that the
empirical distribution converges quickly to a Gaussian distribution, even faster than in the F2

estimation example of Section 2.3.2, as the Kolmogorov-Smirnov statistics are smaller if N is
larger than 32.
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Figure 2.5 – Motif counts: Frequency of the confidence intervals that contain the the-
oretical value T (Θ) for different values of N (on a logarithmic scale). For each N ∈

{8,16,32,64,128,256,512,1024,2048}, we simulate K = 1000 networks with F2 = 2, G2 = 2,
λ = 0.9λM . For each simulated network, we determine the motif frequency with the estimator
Uh7

N and at level 1 − α = 0.95, we build the asymptotic confidence intervals from the weak con-
vergence results: [vt] built from (2.22) (true value of V h7) and [v] built from (2.23) (estimated
value of V h7 by V̂N ). The horizontal dashed lines represent the confidence interval at level 0.95
of the frequency Z =X/K, if X follows the binomial distribution with parameters K and α.
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Figure 2.6 – Motif counts: Distribution of Uh7
N for different values of N . For each N ∈

{8,16,32,64,128,256,512,1024,2048}, we simulate K = 1000 networks with F2 = 2, G2 = 2,
λ = 0.9λM . For each simulated network, we determine the motif frequency with the estimator
Uh7

N . The empirical distributions (solid red lines) are interpolated using the density() function
from base R stats package. The dashed curves in blue correspond to the normal distribution
densities with mean T (Θ) and variance V h7/N . Under each plot, the value of the Kolmogorov-
Smirnov test statistic D between the empirical distribution of Uh7

N and the normal distribution
with mean T (Θ) and variance V h7/N is given. D = supx∣Femp(x) − F (x)∣ where Femp is the
empirical c.d.f. of Uh7

N and F (x) the c.d.f. of the normal distribution with mean T (Θ) and
variance V h7/N .
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2.4. Discussion

In this paper, we have proven a weak convergence result for quadruplet U -statistics over RCE
matrices, using a backward martingale approach. We use the Aldous-Hoover representation of
RCE matrices and a Hewitt-Savage type argument to extend this result and obtain a CLT in
the dissociated case. Using this CLT, we provide a general framework to perform statistical
inference on bipartite exchangeable networks through several examples.

Indeed, U -statistics can be used to build estimators. The advantage of taking quadruplets is
to define functions over several interactions of the same row or column. This allows us to extract
information on the row and column distribution. The CLT then guarantees an asymptotic
normality result of the estimators, where the only unknown is their asymptotic variances, which
have to be estimated then plugged in with Slutsky’s theorem.

Computational cost One interesting feature of the kernels chosen in Section 2.3 is their
computational simplicity. This simplicity comes naturally when considering quadruplet kernels
consisting of small products. Indeed, if we denote YN ∶= (Yij)1≤i≤mN ,1≤j≤nN

, one can write Uh1
N

and Uh2
N used in the F2 estimation example (Sect. 2.3.2 and 2.3.3) as

Uh1
N =

1
nNmN(mN − 1)

[∣Y T
N YN ∣1 −Tr(Y T

N YN)]

Uh2
N =

1
mN(mN − 1)nN(nN − 1)

[(∣YN ∣1)
2
− ∣Y T

N YN ∣1 +Tr(Y T
N YN)

−∣YNY
T

N ∣1+Tr(YNY
T

N ) − ∣Y
⊙2

N ∣1] .

(2.24)

where Tr is the trace operator. We see that Uh1
N and Uh2

N can be computed using only basic
operations on matrices, which are optimized in most computing software. This can also be said
for all the other U -statistics used in this example, and by extension for the estimators θ̂N and
V̂N . Expressions for the remaining U -statistics are given in Appendix 2.I.

In the motif count example (Sect. 2.3.4), the U -statistic Uh7
N can also be easily computed,

despite the hp,q being kernels over submatrices larger than a quadruplet (at least one dimen-
sion greater than 2). The Uhp,q

N U -statistics normally involve more complex summations but
fortunately, we show in Appendix 2.I that simpler expressions can be found for p = 1 or q = 1.

Other models: graphons We have seen that for a class of BEDD models (those falling under
Asm. 2.3.3), the quadruplet U -statistics are particularly interesting because a single quadruplet
contains all the information of the model. The Bernoulli-BEDD used in Section 2.3.4 is an
example of model where this assumption does not hold. Still, one can build estimators, apply
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Theorem 2.2.7 and perform statistical inference on this model, like in Section 2.3.4. In fact,
the only conditions on the model are that it should be RCE and dissociated, i.e. it can be
written as a bipartite W-graph model (see Sect. 2.2.3). For example, given the W-graph model
Yij ∣ ξi, ηj ∼ P(λw(ξi, ηj)) with ∬ w = 1, one could have tested if it is of product form, i.e. if w
can be written as w(u, v) = f(u)g(v) (as in the BEDD models). An appropriate kernel for this
test would be

h(Y(i1,i2;j1,j2)) =
1
4
Yi1j1Yi2j2(Yi1j1 + Yi2j2 − Yi1j2 − Yi1j2 − 2)

+
1
4
Yi1j2Yi2j1(Yi1j2 + Yi2j1 − Yi1j1 − Yi2j2 − 2)

as E[h(Y(i1,i2;j1,j2))] = ∬ w(u, v)(w(u, v) − f(u)g(v))dudv with f(u) = ∫ w(u, v)dv and g(v) =

∫ w(u, v)du and should be equal to 0 if the hypothesis is true.

Extension to larger subgraphs It is legitimate to wonder if one can extend our framework
to U -statistics over submatrices of size different from 2 × 2, for example Y(i1,...,ip;j1,...,jq) of size
p × q, i.e.

Uh
N = [(

mN

p
)(
nN

q
)]
−1

∑
1≤i1<...<ip≤mN

∑
1≤j1<...<jq≤nN

h(Y(i1,...,ip;j1,...,jq)).

Such generalization opens up many possibilities by building new estimators.

First, as seen in Section 2.3.4, in the Bernoulli-BEDD model, the quantities Fk and Gk cannot
be retrieved by a quadruplet for k ≥ 3, but Fk can be retrieved with subgraphs of size 1 × k and
Gk with subgraphs of size k × 1. Second, our framework can also be used to count motifs of size
larger that 2 × 2, since the maximum size of the motifs is determined by the size of the kernel.
Finally, in the row heterogeneity example where we used formula (2.11) to derive an asymptotic
confidence interval for F2, we notice that one could have estimated the term λ4F4 appearing in
V with a kernel over submatrices of size 1 × 4 such as h(Y(i1;j1,j2,j3,j4)) = Yi1j1Yi1j2Yi1j3Yi1j4 and
E[h(Y(i1;j1,j2,j3,j4))] = λ

4F4.

Actually, our theorem can be extended to U -statistics over larger subgraphs under similar
conditions. All the steps of our proof can be adapted to U -statistics of larger subgraphs. These
U -statistics are indeed backward martingales and the equivalent of Propositions 2.D.1 and 2.E.1
require more calculus. As a consequence, the asymptotic variance also has a different expression.
On the one hand, such an extension would allow more flexibility in the choice of the kernel,
hence the ability to build more complex estimators that are asymptotically normal. On the
other hand, in practice, the computation of such U -statistics may also be more complex and
computationally demanding, whereas simple functions on quadruplets can easily be expressed
with matrix operations.
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Degeneracy Degenerate cases are of interest because they are rather common. The degen-
eracy depends on the kernels and the distribution of Y . As an example, assume that one is
interested to test H0 ∶ f ≡ 1 vs. H1 ∶ f /≡ 1 for a Poisson-BEDD model. Under H0, F2 = 1
whereas under H1, F2 > 1. We plan to use the same estimator of F2 than in Section 2.3.2.
Equation (2.16) of the second method could be also obtained applying Theorem 2.2.7 to the
kernel h = h1 − F2h2. From equation (2.10), we see that from that the asymptotic variance
V t = V δ = 0 under H0, since F2 = F3 = F4 = 1. Thus, under H0, this is a degenerate case and
Theorem 2.2.7 does not apply and the limiting distribution of a test statistic using this estimator
is unidentified.

Theorems 2.2.5 and 2.2.7 avoid degeneracy by deliberately excluding the case where V = 0
almost surely. However, these theorems would remain valid in degenerate cases. Indeed, if V = 0
almost surely, then Theorems 2.2.5 and 2.2.7 would yield

√
N(Uh

N −U
h
∞)

P
ÐÐÐ→
n→∞

0.

This can be proven to be true. First, notice that from Corollary 2.H.2, V[Uh
N ∣ F∞] =

V /N + o (1/N), therefore

V[
√
N(Uh

N −U
h
∞)] = NE[V[Uh

N −U
h
∞ ∣ F∞]] +NV[E[Uh

N −U
h
∞ ∣ F∞]]

= NE[V[Uh
N ∣ F∞]]

= E[V ] + o (1)

where we denote V[X] the variance of a random variable X and we used the fact that
Cov(Uh

N , U
h
∞) = Cov(Uh

N ,E[U
h
N ∣ F∞]) = V[E[U

h
N ∣ F∞]] = V[U

h
∞]. If V = 0 almost surely, then

V[
√
N(Uh

N − U
h
∞)] = o(1). By Chebyshev’s inequality, we get

√
N(Uh

N − U
h
∞)

P
ÐÐÐ→
n→∞

0. Austern
and Orbanz (2022) also comes to this conclusion if η2 = 0 in their Theorem 17. However, they
do not explicitly discuss the implications of this case.

In fact, if V = 0 a.s., the U -statistic is degenerate and the rate of convergence of Uh
N −U

h
∞ is

faster than
√
N . This behaviour is similar to regular U -statistic of i.i.d. variables as described

by Lee (1990) or Arcones and Gine (1992). In the proof of Lemma 2.H.1, one could go further
in the derivation of the covariance and developed more the content of the o(1/N) term. This
would have yielded a decomposition of the form:

V[Uh
N ∣ F∞] =

V (1)

N
+
V (2)

N2 +
V (3)

N3 +
V (4)

N4 + o(
1
N4) ,

where V (1) = V of Theorem 2.2.5 and V (2), V (3) and V (4) are non-negative F∞-measurable
random variables. The derivation of closed-form expressions for V (2), V (3) and V (4) is possible
but out of scope.

If V = V (1) = 0 a.s. but P(V (2) > 0) > 0, then we say that the U -statistic is degenerate of
order 1 and the above formula indicates that the right normalization is N(Uh

N −U
h
∞) instead of
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√
N(Uh

N −U
h
∞). We can generalize this intuition as follows: for 2 ≤ d ≤ 4, if V (d′) = 0 a.s. for all

1 ≤ d′ ≤ d − 1 and P(V (d) > 0) > 0, then we say that the U -statistic is degenerate of order d − 1
and N

d
2 (Uh

N −U
h
∞) converges in distribution to some random variable. However, the asymptotic

distribution for degenerate U -statistics is not trivial in general. Even for U -statistics of i.i.d.
variables, the limit is very dependent of the kernel h and it involves combinations of products of
independent Gaussian variables in a form that is not always tractable (Rubin and Vitale, 1980;
Lee, 1990).

Further work might be carried out to investigate the degenerate cases. One lead is to derive
some Hoeffding-type decomposition (see for example Chiang et al., 2021 for jointly and separately
exchangeable arrays, Wang et al., 2015 for kernels of size 2) but for quadruplet kernels taken
on RCE matrices. Hoeffding-type decompositions can help identify the limiting distribution of
degenerate U -statistics, as shown by Lee (1990) and Arcones and Gine (1992) in the i.i.d. case.

Berry-Esseen Further studies might be carried out to investigate the rate of convergence of
√
N(Uh

N − U
h
∞) to its limiting distribution. For specific applications, one can for now rely on

simulations to assess how quickly it converges. A possible direction to find theoretical guarantees
is the derivation of a Berry-Esseen-type bound, similar to Austern and Orbanz (2022) in their
limit theorems.

Choice of the optimal kernels It is simple to design new U -statistics using various kernels.
So when it comes to estimate some particular parameter, one may have the choice between several
kernels. Even though they have the same expectation, not only the asymptotic variances might
differ, but their rates of convergence to their asymptotic distributions can also vary. In addition,
one should remain careful that the derived U -statistics are easily computable. In conclusion,
each kernel does not necessarily lead to the same statistical and computational guarantees. The
art of designing the best estimation procedures or statistical tests using our approach relies on
finding the optimal kernels, depending on the situation.

Appendix 2.A Properties of mN and nN

In this appendix, we provide the proofs for Proposition 2.2.2 and further properties of the
sequences mN and nN defined as mN = 2+ ⌊c(N +1)⌋ and nN = 2+ ⌊(1− c)(N +1)⌋ for all N ≥ 1,
where c is an irrational number (Definition 2.2.1).
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Proof of Proposition 2.2.2. The second result stems from the fact that

mN + nN = 4 + ⌊c(N + 1)⌋ + ⌊(1 − c)(N + 1)⌋ = 4 + ⌊c(N + 1)⌋ + ⌊−c(N + 1)⌋ +N + 1

and ⌊c(N + 1)⌋+ ⌊−c(N + 1)⌋ = −1 because c(N + 1) is not an integer since c is irrational. Then,
the first result simply follows as

mN

mN + nN
=
⌊c(N + 1)⌋ + 2

N + 4
∼
N

c(N + 1) + 2
N + 4

∼
N

cN

N
,

where ∼
N

denotes the asymptotic equivalence when N grows to infinity, i.e. aN ∼
N
bN if and only

if aN/bN Ð→
N→∞

1.

Proof of Corollary 2.2.3. As mN and nN are non-decreasing, the corollary is a direct conse-
quence of mN + nN = 4 +N , because then mN+1 + nN+1 = 4 +N + 1 =mN + nN + 1.

The following definition and proposition pertain to the partition of N∗ which will be helpful
in later proofs.

Definition 2.A.1. We define Bc and B1−c two complementary subsets of N∗ as

Bc = {N ∈ N∗ ∶mN =mN−1 + 1} and B1−c = {N ∈ N∗ ∶ nN = nN−1 + 1} .

Proposition 2.A.2. Set κc(m) ∶= ⌊
m−2

c
⌋ and κ1−c(n) ∶= ⌊

n−2
1−c
⌋. If N ∈ Bc, then N = κc(mN).

Similarly, if N ∈ B1−c, then N = κ1−c(nN).

Proof. Remember that c is an irrational number, so if N ∈ Bc, then

cN + 2 < ⌊cN⌋ + 3 =mN−1 + 1 =mN = ⌊c(N + 1)⌋ + 2 < c(N + 1) + 2,

which means that mN−2
c − 1 < N < mN−2

c , thus N = ⌊mN−2
c
⌋.

Appendix 2.B Backward martingales

In this appendix, we recall the definition of decreasing filtrations, backward martingales and
their convergence theorem. The proof of Theorem 2.B.3 can be found in Doob (1953), Section
7, Theorem 4.2.

Definition 2.B.1. A decreasing filtration is a decreasing sequence of σ-fields F = (Fn)n≥1, i.e.
such that for all n ≥ 1, Fn+1 ⊂ Fn.
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Definition 2.B.2. Let F = (Fn)n≥1 be a decreasing filtration and M = (Mn)n≥1 a sequence of
integrable random variables adapted to F . (Mn,Fn)n≥1 is a backward martingale if and only if
for all n ≥ 1, E[Mn ∣ Fn+1] =Mn+1.

Theorem 2.B.3. Let (Mn,Fn)n≥1 be a backward martingale. Then, (Mn)n≥1 is uniformly
integrable, and, denoting M∞ = E[M1 ∣ F∞] where F∞ = ⋂∞n=1Fn, we have

Mn
a.s.,L1
ÐÐÐ→

n→∞
M∞.

Furthermore, if (Mn)n≥1 is square-integrable, then Mn
L2
ÐÐÐ→
n→∞

M∞.

Appendix 2.C Square-integrable backward martingale

In this appendix, we prove Proposition 2.C.1, which states that Uh
N is a square-integrable

backward martingale.

Proposition 2.C.1. Let Y be a RCE matrix. Let h be a quadruplet kernel such that
E[h(Y(1,2;1,2))

2] < ∞. Let FN = σ((Uh
k,l, k ≥ mN , l ≥ nN)) and F∞ = ⋂∞N=1FN . Set

Uh
∞ ∶= E[h(Y(1,2;1,2)) ∣ F∞]. Then (Uh

N ,FN)N≥1 is a square-integrable backward martingale and

Uh
N

a.s.,L2
ÐÐÐ→
N→∞

Uh
∞ = E[h(Y(1,2;1,2)) ∣ F∞].

The proof relies on the following lemma.

Lemma 2.C.2. For all 1 ≤ i1 < i2 ≤ mN and 1 ≤ j1 < j2 ≤ nN , E[h(Y(i1,i2;j1,j2)) ∣ FN ] =

E[h(Y(1,2;1,2)) ∣ FN ].

Proof. In the proof of this lemma, we specify the matrices over which the U -statistics are taken,
i.e. we denote Uh

k,l(Y ) instead of Uh
k,l the U -statistic of kernel h and of size k × l taken on Y .

By construction, for all k ≥ mN , l ≥ nN , for all matrix permutations Φ ∈ SmN
× SnN

(only
acting on the first mN rows and nN columns), we have Uh

k,l(ΦY ) = Uh
k,l(Y ). Moreover, since Y

is RCE, we also have ΦY D= Y . Therefore,

ΦY ∣ (Uh
k,l(Y ), k ≥mN , l ≥ nN)

D
= Y ∣ (Uh

k,l(Y ), k ≥mN , l ≥ nN).

That means that conditionally on FN , the first mN rows and nN columns of Y are exchangeable
and the result to prove follows from this.

Proof of Proposition 2.C.1. First, we remark that as E[h(Y(1,2;1,2))
2] < ∞, then for all N ,

E[(Uh
N)

2] <∞. Thus, the (Uh
N)N≥1 are square-integrable. Second, F = (FN)N≥1 is a decreasing

filtration and for all N , Uh
N is FN -measurable.
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Now using lemma 2.C.2, we have for all K ≤ N ,

E[Uh
K ∣ FN ] = (

mK

2
)
−2
(
nK

2
)
−2

∑
1≤i1<i2≤mK
1≤j1<j2≤nK

E[h(Y(i1,i2;j1,j2)) ∣ FN ]

= (
mK

2
)
−2
(
nK

2
)
−2

∑
1≤i1<i2≤mK
1≤j1<j2≤nK

E[h(Y(1,2;1,2)) ∣ FN ]

= E[h(Y(1,2;1,2)) ∣ FN ],

In particular, E[Uh
N−1 ∣ FN ] = E[Uh

N ∣ FN ] = U
h
N , which concludes the proof that (Uh

N ,FN)N≥1

is a square-integrable backward martingale. Finally, Theorem 2.B.3 ensures that Uh
N

a.s.,L2
ÐÐÐ→
N→∞

Uh
∞.

Appendix 2.D Asymptotic variance

We prove Proposition 2.D.1 which gives the convergence and an expression for the asymptotic
variance. The proof involves some tedious calculations. Before that, we introduce some notations
to make the proof of Proposition 2.D.1 more readable.

Notation. In this appendix and in Appendix 2.E, we denote

X[i1,i2;j1,j2] ∶= h(Y{i1,i2;j1,j2}), ZNK ∶=
√
N(UK −UK+1),

SNK ∶= E[Z2
NK ∣ FK+1], VN ∶=

∞
∑

K=N
SNK . (2.25)

The exchangeability of Y implies that E[X{i1,i2;j1,j2}X{i′1,i′2;j′1,j′2} ∣ FK] only depends on the
numbers of rows and columns shared by both {i1, i2; j1, j2} and {i′1, i′2; j′1, j′2}. For 0 ≤ p ≤ 2 and
0 ≤ q ≤ 2, we set

c
(p,q)
K ∶= E[X{i1,i2;j1,j2}X{i′1,i′2;j′1,j′2} ∣ FK],

and
c(p,q)
∞ ∶= E[X{i1,i2;j1,j2}X{i′1,i′2;j′1,j′2} ∣ F∞],

where they share p rows and q columns.

Proposition 2.D.1. Let (VN)N≥1 be as defined in (2.25). Then, under the hypotheses of The-
orem 2.2.5, we have

VN
P

ÐÐÐ→
N→∞

V = 4c−1
(c(1,0)
∞ − (Uh

∞)
2
) + 4(1 − c)−1

(c(0,1)
∞ − (Uh

∞)
2
).

The proof of Proposition 2.D.1 will be based on the following five lemmas.
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Lemma 2.D.2. If K ∈ Bc (see Definition 2.A.1), then

ZN,K−1 =
√
N

2
mK − 2

(Uh
K − δK),

where
δK = (mK − 1)−1

(
nK

2
)
−1

∑
1≤i1≤mK−1
1≤j1<j2≤nK

X{i1,mK ;j1,j2}.

Proof. Observe that

∑
1≤i1<i2≤mK
1≤j1<j2≤nK

X{i1,i2;j1,j2} = ∑
1≤i1<i2≤mK−1

1≤j1<j2≤nK

X{i1,i2;j1,j2} + ∑
1≤i1≤mK−1
1≤j1<j2≤nK

X{i1,mK ;j1,j2}. (2.26)

But if K ∈ Bc, then mK−1 =mK − 1 and nK−1 = nK . Therefore, equation (2.26) is equivalent to

(
mK

2
)(
nK

2
)Uh

K = (
mK − 1

2
)(
nK

2
)Uh

K−1 + (mK − 1)(nK

2
)δK ,

so
Uh

K−1 =
1

mK − 2
(mKU

h
K − 2δK) .

This concludes the proof since ZN,K−1 =
√
N(Uh

K−1 −U
h
K).

We now calculate SNK in the following lemmas.

Lemma 2.D.3. For all 0 ≤ p ≤ 2 and 0 ≤ q ≤ 2, c(p,q)
N

a.s.,L1
ÐÐÐ→
N→∞

c
(p,q)
∞ .

Proof. This follows from the fact that (c(p,q)
N ,FN)N≥1 is a backward martingale.

Lemma 2.D.4. If K ∈ Bc (see Definition 2.A.1), then

SN,K−1 = 4N( (nK − 2)(nK − 3)
(mK − 1)(mK − 2)nK(nK − 1)

c
(1,0)
K −

1
(mK − 2)2

(Uh
K)

2
+ ψ(K)),

where ψ does not depend on N and ψ(K) = o(m−2
K ).

Proof. Because of Lemma 2.D.2 and the FK-measurability of Uh
K ,

SN,K−1 =
4N

(mK − 2)2
(E[δ2

K ∣ FK] + (U
h
K)

2
− 2Uh

KE[δK ∣ FK]).

First, Lemma 2.C.2 implies that
E[δK ∣ FK] = U

h
K .
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Then, we can calculate

E[δ2
K ∣ FK] = (mK − 1)−2

(
nK

2
)
−2

∑
1≤i1≤mK−1
1≤j1<j2≤nK

∑
1≤i′1≤mK−1
1≤j′1<j′2≤nK

E[X{i1,mK ;j1,j2}X{i′1,mK ;j′1,j′2} ∣ FK].

Each term of the sum only depends on the number of rows and columns the quadruplets in
X{i1,mK ;j1,j2} and X{i′1,mK ;j′1,j′2} have in common. For example, if they share p rows and q

columns, it is equal to c(p,q)
K . So by breaking down the different cases for p and q, we may count

the number of possibilities. For example, if (p, q) = (1,2), then the number of possibilities is
(mK − 1)(mK − 2)(nK

2 ). This gives

E[δ2
K ∣ FK] = (mK − 1)−1

(
nK

2
)
−1
{

1
2
(mK − 2)(nK − 2)(nK − 3)c(1,0)

K + 2(mK − 2)(nK − 2)c(1,1)
K

+ (mK − 2)c(1,2)
K +

1
2
(nK − 2)(nK − 3)c(2,0)

K + 2(nK − 2)c(2,1)
K + c

(2,2)
K }.

Finally, setting

ψ(K) ∶= (mK − 1)−3
(
nK

2
)
−1
{2(mK − 2)(nK − 2)c(1,1)

K + (mK − 2)c(1,2)
K

+
1
2
(nK − 2)(nK − 3)c(2,0)

K + 2(nK − 2)c(2,1)
K + c

(2,2)
K },

we obtain the desired result, with ψ(K) = o(m−2
K ) since mK

c ∼K

nK

1−c ∼K
K.

Remark. In the case where K ∈ B1−c, the equivalent formulas to those of Lemmas 2.D.2 and 2.D.4
are derived from similar proofs. If K ∈ B1−c, then

ZN,K−1 =
√
N

2
nK − 2

(Uh
K − γK),

where
γK = (nK − 1)−1

(
mK

2
)
−1

∑
1≤i1<i2≤mK
1≤j1≤nK−1

X{i1,i2;j1,nK},

and
SN,K−1 = 4N( (mK − 2)(mK − 3)

(nK − 1)(nK − 2)mK(mK − 1)
c
(0,1)
K −

1
(nK − 2)2

(Uh
K)

2
+ φ(K)),

where φ does not depend on N and φ(K) = o(n−2
K ).

Lemma 2.D.5. Let (Rn)n≥1 be a sequence of random variables and (λn)n≥1 a sequence of real
positive numbers. Set Cn ∶= n∑

∞
k=n λkRk. If

● n∑∞k=n λk ÐÐÐ→
n→∞

1, and

● there exists a random variable R∞ such that Rn
a.s.
ÐÐÐ→
n→∞

R∞,

then Cn
a.s.
ÐÐÐ→
n→∞

R∞. Furthermore, if Rn
L1
ÐÐÐ→
n→∞

R∞, then Cn
L1
ÐÐÐ→
n→∞

R∞.
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Proof. Notice that

∣Cn −R∞∣ = ∣n
∞
∑
k=n

λkRk −R∞∣

≤ ∣n
∞
∑
k=n

λkRk − n
∞
∑
k=n

λkR∞∣ + ∣n
∞
∑
k=n

λkR∞ −R∞∣

≤ (n
∞
∑
k=n

λk) × sup
k≥n
∣Rk −R∞∣ + ∣n

∞
∑
k=n

λk − 1∣ × ∣R∞∣.

If n∑∞k=n λk ÐÐÐ→
n→∞

1 and Rn
a.s.
ÐÐÐ→
n→∞

R∞, then for all ω fixed except a set of neglectable size,
Cn(ω)ÐÐÐ→

n→∞
R∞(ω), which gives the a.s. convergence. Now, consider also that

E[∣Cn −R∞∣] ≤ n
∞
∑
k=n

λkE[∣Rk −R∞∣] + ∣n
∞
∑
k=n

λk − 1∣E[∣R∞∣]

≤ (n
∞
∑
k=n

λk) × sup
k≥n

E[∣Rk −R∞∣] + ∣n
∞
∑
k=n

λk − 1∣E[∣R∞∣].

So if Rn
L1
ÐÐÐ→
n→∞

R∞, then E[∣Rn − R∞∣]
L1
ÐÐÐ→
n→∞

0 and supk≥n E[∣Rk − R∞∣]
L1
ÐÐÐ→
n→∞

0. Since
n∑∞k=n λk ÐÐÐ→

n→∞
1, the first term converges to 0, and the second term too because E[∣R∞∣] <∞.

Finally, E[∣Cn −R∞∣]ÐÐÐ→
n→∞

0.

Lemma 2.D.6. Let (Qn)n≥1 be a sequence of random variables. Set Cn ∶= n∑
∞
k=nQk. If there

exists a random variable C∞ such that n2Qn
a.s.
ÐÐÐ→
n→∞

C∞, then Cn
a.s.
ÐÐÐ→
n→∞

C∞. Furthermore, if

n2Qn
L1
ÐÐÐ→
n→∞

C∞, then Cn
L1
ÐÐÐ→
n→∞

C∞.

Proof. This is a direct application of Lemma 2.D.5, where Rn ∶= n
2Qn and λn ∶= n

−2, as
n∑∞k=n k

−2 ÐÐÐ→
n→∞

1.

Proof of Proposition 2.D.1. Recall that from Corollary 2.2.3, Bc and B1−c form a partition of
the set of the positive integers N∗, so that we can write

VN = V
(c)

N + V
(1−c)

N ,

where V (c)N = ∑
∞
K=N+1
K∈Bc

SN,K−1 and V (1−c)
N = ∑

∞
K=N+1
K∈B1−c

SN,K−1. Here, we only detail the computation

of V (c)N , as one would proceed analogously with V
(1−c)

N .

In V
(c)

N , the sum is over the K ∈ Bc. So, from Lemma 2.D.4,

SN,K−1 = 4N( (nK − 2)(nK − 3)
(mK − 1)(mK − 2)nK(nK − 1)

c
(1,0)
K −

1
(mK − 2)2

(Uh
K)

2
+ ψ(K)).
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Now we use Proposition 2.A.2 to replace K with κc(mK) = ⌊
mK−2

c
⌋ and

SN,κc(mK)−1 = 4N( (κc(mK) −mK + 2)(κc(mK) −mK + 1)
(mK − 1)(mK − 2)(κc(mK) −mK + 4)(κc(mK) −mK + 3)

c
(1,0)
κc(mK)

−
1

(mK − 2)2
(Uh

κc(mK))
2
+ ψ(κc(mK))).

Therefore, because for all K ∈ Bc we have mK =mK−1 + 1, we can then transform the sum over
K into a sum over m and

V
(c)

N =
∞
∑

K=N+1
K∈Bc

SN,K−1 =
∞
∑

m=mN+1

SN,κc(m)−1 = N
∞
∑

m=mN+1

Rm,

where Rm ∶= SN,κc(m)−1/N , i.e.

Rm =
4(κc(m) −m + 2)(κc(m) −m + 1)

(m − 1)(m − 2)(κc(m) −m + 4)(κc(m) −m + 3)
c
(1,0)
κc(m) −

4
(m − 2)2

(Uh
κc(m))

2
+ 4ψ(κc(m)).

But we notice that since ψ(κc(m)) = o(m
−2), then Lemma 2.D.3 and Proposition 2.C.1 give

for all N ,
m2Rm

a.s.,L1
ÐÐÐ→
m→∞

4(c(1,0)
∞ − (Uh

∞)
2
).

And since mN+1
N ÐÐÐ→

N→∞
c from Proposition 2.2.2, we find with Lemma 2.D.6 that

V
(c)

N =
N

mN+1
×mN+1

∞
∑

m=mN+1

Rm
a.s.,L1
ÐÐÐ→
N→∞

4
c
(c(1,0)
∞ − (Uh

∞)
2
).

We can proceed likewise with V
(1−c)

N , where all the terms have K ∈ B1−c, to get

V
(1−c)

N

a.s.,L1
ÐÐÐ→
N→∞

4
1 − c

(c(0,1)
∞ − (Uh

∞)
2
),

which finally gives

VN = V
(c)

N + V
(1−c)

N

a.s.,L1
ÐÐÐ→
N→∞

V ∶=
4
c
(c(1,0)
∞ − (Uh

∞)
2
) +

4
1 − c

(c(0,1)
∞ − (Uh

∞)
2
).

Appendix 2.E Conditional Lindeberg condition

We verify the conditional Lindeberg condition as stated by Proposition 2.E.1. We use the
notations defined in Appendix 2.D.

Proposition 2.E.1. Let ϵ > 0. Then the conditional Lindeberg condition is satisfied:
∞
∑

K=N
E[Z2

NK1{∣ZNK ∣>ϵ}∣FK+1]
P

ÐÐÐ→
N→∞

0
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The proof relies on the four following lemmas.

Lemma 2.E.2. Let (Qn)n≥1 be a sequence of random variables. Set Cn ∶= n∑
∞
k=nQk. If

n2E[∣Qn∣]ÐÐÐ→
n→∞

0, then Cn
P
ÐÐÐ→
n→∞

0.

Proof. Lemma 2.D.6 and the triangular inequality give E[∣Cn∣] ≤ n∑
∞
k=n E[∣Qk∣] ÐÐÐ→

n→∞
0. Let

some ϵ > 0, then Markov’s inequality ensures that

P(∣Cn∣ > ϵ) ≤
E[∣Cn∣]

ϵ
ÐÐÐ→
n→∞

0.

Lemma 2.E.3. For sequences of random variables Tn and sets Bn, if Tn
L2
ÐÐÐ→
n→∞

T and

1(Bn)
P
ÐÐÐ→
n→∞

0, then E[T 2
n1(Bn)]ÐÐÐ→

n→∞
0.

Proof. Note that for all n, a > 0,

E[T 2
n1(Bn)] = E[T 2

n1(Bn)1(T
2
n > a)] +E[T

2
n1(Bn)1(T

2
n ≤ a)]

≤ E[T 2
n1(T

2
n > a)] +E[a1(Bn)]

≤ E[T 2
n1(T

2
n > a)] + aP(Bn)

Let ϵ > 0. Tn
L2
ÐÐÐ→
n→∞

T , so (T 2
n)n≥1 is uniformly integrable and there exists a > 0 such that

E[T 2
n1(T

2
n > a)] ≤ supk E[T 2

k1(T
2
k > a)] ≤

ϵ
2 . Moreover, 1(Bn)

P
ÐÐÐ→
n→∞

0, which translates to
P(Bn)ÐÐÐ→

n→∞
0 and there exists an integer n0 such that for all n > n0, P(Bn) ≤

ϵ
2a . Choosing such a

real number a, we can always find an integer n0 such that for n > n0, we have E[T 2
n1(Bn)] ≤ ϵ.

Lemma 2.E.4. For sequences of random variables Mn and sets Bn, if (Mn)n≥1 is a backward
martingale with respect to some filtration and 1(Bn)

P
ÐÐÐ→
n→∞

0, then E[Mn1(Bn)]ÐÐÐ→
n→∞

0.

Proof. We notice that from Theorem 2.B.3, (Mn)n≥1 is uniformly integrable, then the proof is
similar to that of Lemma 2.E.3.

Lemma 2.E.5. Set AK ∶=m
−1
K (

nK

2 )
−1
∑2≤i2≤mK+1

1≤j1<j2≤nK

X{1,i2;j1,j2}. If K ∈ Bc (see Definition 2.A.1),

then AK
D
= δK ,where δK is defined in Lemma 2.D.2.

Proof. Remember that if K ∈ Bc, then by symmetry of h, δK = (mK −

1)−1(nK

2 )
−1

∑
1≤i2≤mK−1
1≤j1<j2≤nK

X{mK ,i2;j1,j2}. The exchangeability of Y says that all permutations on the
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rows and the columns of Y leave its distribution unchanged, hence for all (σ1, σ2) ∈ SmK
× SnK

,
we have

δK
L
= (mK − 1)−1

(
nK

2
)
−1

∑
1≤i2≤mK−1
1≤j1<j2≤nK

X{σ1(mK),σ1(i2);σ2(j1),σ2(j2)}.

Consider σ2 to be the identity and σ1 ∈ SmK
the permutation defined by:

● σ1(i) = i + 1 if i <mK ,
● σ1(mK) = 1,
● σ1(i) = i if i >mK .

Then AK = (mK − 1)−1(nK

2 )
−1

∑
1≤i2≤mK−1
1≤j1<j2≤nK

X{σ1(mK),σ1(i2);σ2(j1),σ2(j2)}, hence AK
L
= δK .

Proof of Proposition 2.E.1. Similarly to the proof of the Proposition 2.D.1, we can verify the
conditional Lindeberg condition by decomposing the sum along with K +1 ∈ Bc and K +1 ∈ B1−c

(Cor. 2.2.3), so here we only consider ∑∞K=N+1
K∈Bc

E[Z2
N,K−11{∣ZN,K−1∣>ϵ} ∣ FK].

Like previously, using Proposition 2.A.2, we can transform the sum over K into a sum over
m:

∞
∑

K=N+1
K∈Bc

E[Z2
N,K−11{∣ZN,K−1∣>ϵ} ∣ FK] =

∞
∑

m=mN+1

E[Z2
N,κc(m)−11{∣ZN,κc(m)−1∣>ϵ} ∣ Fκc(m)],

where κc(m) = ⌊
m−2

c ⌋.

We remark that using Lemma 2.D.2, for m ≥mN+1 =mN + 1 > c(N + 1) + 2,

1{∣ZN,κc(m)−1∣>ϵ} ≤ 1{ 2
√

N
m−2 ∣U

h
κc(m)

−δκc(m)∣>ϵ}

≤ 1
{∣Uh

κc(m)
−δκc(m)∣>

m−2
2
√

m−2
c

ϵ}

≤ 1
{∣Uh

κc(m)
∣>
√

c(m−2)
4 ϵ}

+ 1
{∣δκc(m)∣>

√

c(m−2)
4 ϵ}

.

So, using Lemma 2.D.2 again and the identity (Uh
κc(m) − δκc(m))

2 ≤ 2 ((Uh
κc(m))

2 + δ2
κc(m)), we

get for m ≥mN+1,

E[Z2
N,κc(m)−11{∣ZN,κc(m)−1∣>ϵ} ∣ Fκc(m)]

≤
8N

(m − 2)2
E[ ((Uh

κc(m))
2
+ δ2

κc(m))(1{∣Uh
κc(m)

∣>
√

c(m−2)
4 ϵ}

+ 1
{∣δκc(m)∣>

√

c(m−2)
4 ϵ}

)∣Fκc(m)].

This inequality and Lemma 2.E.2 imply that a sufficient condition to have the conditional
Lindeberg condition is

E[ ((Uh
κc(m))

2
+ δ2

κc(m))(1{∣Uh
κc(m)

∣>
√

c(m−2)
4 ϵ}

+ 1
{∣δκc(m)∣>

√

c(m−2)
4 ϵ}

)]ÐÐÐ→
m→∞

0. (2.27)
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Next, we prove that this condition is satisfied.

First, note that from Markov’s inequality,

P
⎛

⎝
∣Uh

κc(m)∣ >

√
c(m − 2)

4
ϵ
⎞

⎠
≤

4E[∣Uh
κc(m)∣]

ϵ
√
c(m − 2)

ÐÐÐ→
m→∞

0

and

P
⎛

⎝
∣δκc(m)∣ >

√
c(m − 2)

4
ϵ
⎞

⎠
≤

4E[∣δκc(m)∣]

ϵ
√
c(m − 2)

ÐÐÐ→
m→∞

0.

Now, remember that from Proposition 2.C.1, Uh
K

L2
ÐÐÐ→
K→∞

Uh
∞, therefore Uh

κc(m)
L2
ÐÐÐ→
m→∞

Uh
∞ and

Lemma 2.E.3 can be applied, which gives

E[(Uh
κc(m))

2
(1
{∣Uh

κc(m)
∣>
√

c(m−2)
4 ϵ}

+ 1
{∣δκc(m)∣>

√

c(m−2)
4 ϵ}

)]ÐÐÐ→
m→∞

0. (2.28)

Likewise, we calculated E[δ2
K ∣ FK] in the proof of Lemma 2.D.4. The application of

Lemma 2.D.3 shows that E[δ2
κc(m) ∣ Fκc(m)] is a backward martingale. It follows from

Lemma 2.E.4 that

E[δ2
κc(m)1{∣Uh

κc(m)
∣>
√

c(m−2)
4 ϵ}

] = E[E[δ2
κc(m) ∣ Fκc(m)]1{∣Uh

κc(m)
∣>
√

c(m−2)
4 ϵ}

]ÐÐÐ→
m→∞

0. (2.29)

Finally, applying Lemma 2.E.5, we obtain

E[δ2
κc(m)1{∣δκc(m)∣>

√

c(m−2)
4 ϵ}

] = E[A2
κc(m)1{∣Aκc(m)∣>

√

c(m−2)
4 ϵ}

], (2.30)

where AK = m
−1
K (

nK

2 )
−1
∑2≤i2≤mK+1

1≤j1<j2≤nK

X{1,i2;j1,j2}. Using similar arguments as in the proof of

Proposition 2.C.1, it can be shown that AK is a square integrable backward martingale with
respect to the decreasing filtration FA

K = σ(AK ,AK+1, ...). Therefore, Theorem 2.B.3 ensures
that there exists A∞ such that AK

L2
ÐÐÐ→
K→∞

A∞. This proves that Aκc(m)
L2
ÐÐÐ→
m→∞

A∞, so applying
Lemma 2.E.3 again, we obtain

E[A2
κc(m)1{∣Aκc(m)∣>

√

c(m−2)
4 ϵ}

]ÐÐÐ→
m→∞

0. (2.31)

Combining (2.28), (2.29), (2.30) and (2.31), we deduce that the sufficient condition (2.27) is
satisfied, thus concluding the proof.
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Appendix 2.F Hewitt-Savage theorem

Proof of Theorem 2.2.13. This proof adapts the steps taken by Feller (1971) and detailed by
Durrett (2019) to our case. Let A ∈ E∞.

First, let AN = σ((ξi)1≤i≤mN
, (ηj)1≤j≤nN

, (ζij)1≤i≤mN ,1≤j≤nN
), the σ-field generated by the

random variables associated with the first mN rows and nN columns. Notice that A ∈ A ∶=
⋂
∞
n=1AN . Since A is the limit of AN , then for all ϵ > 0, there exists a N and an associated set

AN ∈ AN such that P(A −A ∩AN) < ϵ and P(AN −A ∩AN) < ϵ, so that P(A∆AN) < 2ϵ, where
∆ is the symmetric difference operator, i.e. B∆C = (B −C) ∪ (C −B). Therefore, we can pick
a sequence of sets AN such that P(A∆AN)Ð→ 0.

Next, we consider the row-column permutation Φ(N) = (σ(N)1 , σ
(N)
2 ) ∈ SmN

× SnN
defined by

σ
(N)
1 (i) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i +mN if 1 ≤ i ≤mN ,

i −mN if mN + 1 ≤ i ≤ 2mN ,

i if 2mN + 1 ≤ i.

σ
(N)
2 (j) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

j + nN if 1 ≤ j ≤ nN ,

j − nN if nN + 1 ≤ j ≤ 2nN ,

j if 2nN + 1 ≤ j.

Since A ∈ E∞, by the definition of E∞, it follows that

{ω ∶ Φ(N)ω ∈ A} = {ω ∶ ω ∈ A} = A.

Using this, if we denote A′N ∶= {ω ∶ Φ(N)ω ∈ AN}, then we can write that

{ω ∶ Φ(N)ω ∈ AN ∆A} = {ω ∶ ω ∈ A′N ∆A} = A′N ∆A.

Furthermore, the (ξi)1≤i<∞, (ηj)1≤j<∞ and (ζij)1≤i<∞,1≤j<∞ are i.i.d., so

P(AN ∆A) = P(ω ∶ ω ∈ AN ∆A) = P(ω ∶ Φ(N)ω ∈ AN ∆A).

and we conclude that P(A′N ∆A) = P(AN ∆A)Ð→ 0.

From this, we derive that P(AN) Ð→ P(A) and P(A′N) Ð→ P(A). We also remark that
P(AN ∆A′N) ≤ P(AN ∆A) + P(A′N ∆A)Ð→ 0, so P(AN ∩A

′
N)Ð→ P(A).

But AN and A′N are independent, so we have P(AN ∩ A
′
N) = P(AN)P(A′N) Ð→ P(A)2,

therefore P(A) = P(A)2, which means that P(A) = 0 or 1.
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Appendix 2.G Identifiability of the BEDD model

2.G.1 Proof of Theorem 2.3.2

First, we define the generalized inverse of a cumulative distribution function and we prove
some useful properties. We need Lemmas 2.G.3 and 2.G.4 to prove Theorem 2.3.2.

Definition 2.G.1. For any increasing, bounded, càdlàg function t ∶ R→ R, we define its gener-
alized inverse by t−1 ∶ R→ R as follows:

t−1
(x) = inf{u ∈ R ∶ t(u) > x}.

Lemma 2.G.2 (de La Fortelle, 2020, Proposition 2.2.). Let t be an increasing, bounded, càdlàg
function. Then (t−1)−1 = t.

Lemma 2.G.3. Let U be a random variable such that U ∼ U[0,1]. Let D = f(U), where f is an
increasing, bounded, càdlàg function. Let f̃ be the cumulative distribution function of D. Then
f−1 = f̃ and f̃−1 = f .

Proof. Since f is right-continuous, for all x ∈ R, P(f(U) ≤ x) = inf{u ∈ [0,1] ∶ f(u) > x} so that
means f̃ = f−1 according to Definition 2.G.1, so the first equation is proven. Also Lemma 2.G.2
ensures that f = (f−1)−1 = f̃−1, which concludes the proof of this lemma.

Lemma 2.G.4. Let D be a random variable such for all k ∈ N, E[Dk] ≤ αk, for some α > 0.
Then, the distribution of D is uniquely characterized by its moments.

Proof. We show that the exponential generating series of the moments of D M(r) =

∑
∞
k=1 E[Dk] r

k

k! has a positive radius of convergence.

Using the fact that k!/kk ÐÐÐ→
k→∞

1 and that E[Dk] ≤ αk for all k ∈ N, we see that

lim sup
k→∞

(
E[Dk]

k!
)

1
k

= lim sup
k→∞

E[Dk]
1
k

k

≤ α lim sup
k→∞

1
k

<∞.

So by the Cauchy-Hadamard’s theorem, the series ∑k
E[Dk]rk

k! converges for any r > 0, which is
a sufficient condition so that D is determined by its moments (E[Dk])k≥1 (see Sect. 9.2, Thm.
2 of Billingsley (1995)).
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Using Lemmas 2.G.3 and 2.G.4, we can finally prove Theorem 2.3.2.

Proof of Theorem 2.3.2. Let Θ = (λ, f, g) be BEDD parameters. Here, we prove that f is
uniquely characterised by (Fk)k≥1. In order to do that, we introduce a random variable D

which both has moments (Fk)k≥1 and f as the generalized inverse of its cumulative distribution
function (Definition 2.G.1). We show that D is uniquely characterised by f and then, by its
moments.

1. Let U be a random variable such that U ∼ U[0,1]. Let D = f(U). For all k ≥ 1,
E[Dk] = Fk.

2. Since f is bounded, we notice that for all k ∈ N, Fk = ∫ f
k ≤ sup[0,1] f

k = ∥f∥k∞, therefore
E[Dk] ≤ ∥f∥k∞.

So Lemma 2.G.4 ensures that the distribution of D is uniquely characterised by its
moments (Fk)k≥1.

3. Now, for some other increasing, bounded, càdlàg function f∗. Let D∗ = f∗(U) and
f̃∗ its cumulative distribution function. If D ∼ D∗, then f̃ = f̃∗. Therefore, using the
generalized inverse (Definition 2.G.1), we have f̃−1 = (f̃∗)−1. Finally, Lemma 2.G.3
implies that f = f∗. Thus, the distribution of D is uniquely characterised by f .

We can conclude by stating that the moments (Fk)k≥1 of D are then uniquely characterised
by f .

By symmetry, the same follows for g and (Gk)k≥1.

2.G.2 Proof of Theorem 2.3.4

Theorem 2.3.4 is proven by induction using two lemmas.

Lemma 2.G.5. Let Θ = (λ, f, g) be BEDD parameters and Y ∼ L-BEDD(Θ). For all i ∈ N and
for all (j1, j2) ∈ N2 such that j1 ≠ j2,

E[Ψk(Yij1) × Yij2] = λ
k+1Fk+1Gk.

Proof. Let Θ = (λ, f, g) be BEDD parameters and Y ∼ L-BEDD(Θ), for any i ∈ N and (j1, j2) ∈
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N2 such that j1 ≠ j2,

E[Ψk(Yij1) × Yij2] = E[E[Ψk(Yij1) × Yij2 ∣ ξi, ηj1 , ηj2]]

= E[E[Ψk(Yij1) ∣ ξi, ηj1] ×E[Yij2 ∣ ξi, ηj2]]

= E[λkf(ξi)
kg(ηj1)

k
× λf(ξi)g(ηj2)]

= λk+1E[f(ξi)
k+1]E[g(ηj1)

k]E[g(ηj2)]

= λk+1Fk+1Gk.

Lemma 2.G.6. Let Θ = (λ, f, g) be BEDD parameters and Y ∼ BEDD(Θ). For all (i1, i2) ∈ N2

such that i1 ≠ i2 and for all j ∈ N,

E[Ψk(Yi1j1) × Yi2j1] = λ
k+1FkGk+1.

Proof. Let Θ = (λ, f, g) be BEDD parameters and Y ∼ L-BEDD(Θ), for any (i1, i2) ∈ N2 such
that i1 ≠ i2 and for any j ∈ N,

E[Ψk(Yi1j) × Yi2j] = E[E[Ψk(Yi1j) × Yi2j ∣ ξi1 , ξi2 , ηj]]

= E[E[Ψk(Yi1j) ∣ ξi1 , ηj] ×E[Yi2j ∣ ξi2 , ηj]]

= E[λkf(ξi1)
kg(ηj)

k
× λf(ξi2)g(ηj)]

= λk+1E[f(ξi1)
k]E[f(ξi2)]E[g(ηj)

k+1]

= λk+1FkGk+1.

Proof of Theorem 2.3.4. Let Θ = (λ, f, g) be BEDD parameters and Y ∼ L-BEDD(Θ). Let
Y(i1,i2;j1,j2) be a quadruplet of Y . Since Assumption 2.3.3 holds, we set the (Ψk)k≥1 such that
E[Ψk(X)] = µ

k for all k ∈ N. We know that E[Yi1j1] = λ.

● First, recall that F1 = G1 = 1.
● Then, having recovered λ and all the Fℓ, Gℓ for 1 ≤ ℓ ≤ k, we can recover Fk+1 and Gk+1

as from Lemmas 2.G.5 and 2.G.6,

Fk+1 = λ
−(k+1)G−1

k E[Ψk(Yi1j1) × Yi1j2]

Gk+1 = λ
−(k+1)F−1

k E[Ψk(Yi1j1) × Yi2j1]

Then, the theorem is proven by induction.
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Appendix 2.H Derivation of variances

In this section, we derive a general formula for the covariance of two U -statistics and then
we derive asymptotic variances for specific kernels used in Section 2.3. We denote for any k > 0,
Fk ∶= ∫ f

k and Gk ∶= ∫ g
k.

Lemma 2.H.1. Let Y be a RCE matrix. Let h1 and h2 be two quadruplet kernels. Let Uh1
N ∶=

Uh1
mN ,nN

and Uh2
N ∶= U

h2
mN ,nN

, defined by Formula (2.5) and Definition 2.2.1. For any σ-field F ,

Cov(Uh1
N , Uh2

N ∣ F) =
4
cN

Cov(h1(Y(1,2;1,2)), h2(Y(1,3;3,4)) ∣ F)

+
4

(1 − c)N
Cov(h1(Y(1,2;1,2)), h2(Y(3,4;1,3)) ∣ F) + o(

1
N
) .

Proof. Similar to the proof of Lemma 2.D.4, using the exchangeability of the quadruplets, we
deduce that

Cov(Uh1
N , Uh2

N ∣ F)

= (
mN

2
)
−2
(
nN

2
)
−2

Cov
⎛
⎜
⎜
⎝

∑
1≤i1<i2≤mN
1≤j1<j2≤nN

h1(Y(i1,i2;j1,j2)), ∑
1≤i1<i2≤mN
1≤j1<j2≤nN

h2(Y(i1,i2;j1,j2))
RRRRRRRRRRR

F

⎞
⎟
⎟
⎠

,

= (
mN

2
)
−2
(
nN

2
)
−2

∑
1≤i1<i2≤mN
1≤j1<j2≤nN

∑
1≤i′1<i′2≤mN

1≤j′1<j′2≤nN

Cov(h1(Y(i1,i2;j1,j2)), h2(Y(i′1,i′2;j′1,j′2)) ∣ F),

= (
mN

2
)
−1
(
nN

2
)
−1

∑
1≤i′1<i′2≤mN

1≤j′1<j′2≤nN

Cov(h1(Y(1,2;1,2)), h2(Y(i′1,i′2;j′1,j′2)) ∣ F),

= (
mN

2
)
−1
(
nN

2
)
−1
((mN − 2)(nN − 2)(nN − 3)Cov(h1(Y(1,2;1,2)), h2(Y(1,3;3,4)) ∣ F)

+ (mN − 2)(mN − 3)(nN − 2)Cov(h1(Y(1,2;1,2)), h2(Y(3,4;1,3)) ∣ F)

+ o(mNn
2
N) + o(m

2
NnN)),

=
4

c2(1 − c)2N4(c(1 − c)
2N3Cov(h1(Y(1,2;1,2)), h2(Y(1,3;3,4)) ∣ F)

+ c2
(1 − c)N3Cov(h1(Y(1,2;1,2)), h2(Y(3,4;1,3)) ∣ F) + o(N

3
)),

=
4
cN

Cov(h1(Y(1,2;1,2)), h2(Y(1,3;3,4)) ∣ F)

+
4

(1 − c)N
Cov(h1(Y(1,2;1,2)), h2(Y(3,4;1,3)) ∣ F) + o(

1
N
) .
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Corollary 2.H.2. Let Y be a RCE matrix. Let h1 and h2 be two quadruplet kernels. Let
Uh1

N ∶= Uh1
mN ,nN

and Uh2
N ∶= Uh2

mN ,nN
, defined by Formula (2.5) and Definition 2.2.1. For any

σ-field F ,

V[Uh
N ∣ F] =

4
cN

Cov(h(Y(1,2;1,2)), h(Y(1,3;3,4)) ∣ F)

+
4

(1 − c)N
Cov(h(Y(1,2;1,2)), h(Y(3,4;1,3)) ∣ F) + o(

1
N
) .

Lemma 2.H.3. Let Y be a RCE matrix generated by the Poisson-BEDD model, with density λ
and degree functions f and g. Let h be a quadruplet kernel defined by

h(Y(i1,i2;j1,j2)) =
1
2
(Yi1j1Yi1j2 + Yi2j1Yi2j2),

then a closed-form expression for V of Theorem 2.2.7 is

V =
λ4

c
(F4 − F

2
2 ) +

4λ4

1 − c
F 2

2 (G2 − 1).

Proof. Using the fact that the (Yij)(i,j)∈N2 are independent conditionally on ξ = (ξi)i∈N and
η = (ηj)j∈N, we find that

Cov(h(Y(1,2;1,2)), h(Y(1,3;3,4))) =
1
4

Cov(Y11Y12 + Y21Y22, Y13Y14 + Y33Y34),

=
1
4

Cov(Y11Y12, Y13Y14),

=
1
4
(E[Y11Y12Y13Y14] −E[Y11Y12]E[Y13Y14]) ,

=
1
4
(E[Y11Y12Y13Y14] −E[Y11Y12]

2) ,

=
1
4
(E[E[Y11Y12Y13Y14 ∣ ξ, η]] −E[E[Y11Y12 ∣ ξ, η]]

2) ,

=
1
4
(E[λ4f(ξ1)

4g(η1)g(η2)g(η3)g(η4)]

−E[λ2f(ξ1)
2g(η1)g(η2)]

2) ,

=
λ4

4
(F4 − F

2
2 ),
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and

Cov(h(Y(1,2;1,2)), h(Y(3,4;1,3))) =
1
4

Cov(Y11Y12 + Y21Y22, Y31Y33 + Y41Y43),

=
1
4
× 4Cov(Y11Y12, Y31Y33),

= E[Y11Y12Y31Y33] −E[Y11Y12]E[Y31Y33],

= E[Y11Y12Y31Y33] −E[Y11Y12]
2,

= E[E[Y11Y12Y31Y33 ∣ ξ, η]] −E[E[Y11Y12 ∣ ξ, η]]
2,

= E[λ4f(ξ1)
2f(ξ3)

2g(η1)
2g(η2)g(η3)]

−E[λ2f(ξ1)
2g(η1)g(η2)]

2,

= λ4
(F 2

2G2 − F
2
2 ),

= λ4F 2
2 (G2 − 1).

The proof is concluded injecting these results in the expression of

V =
4
c

Cov(h(Y(1,2;1,2)), h(Y(1,3;3,4))) +
4

1 − c
Cov(h(Y(1,2;1,2)), h(Y(3,4;1,3)))

given by Theorem 2.2.7.

Lemma 2.H.4. Let Y be a RCE matrix generated by the Poisson-BEDD model, with density λ
and degree functions f and g. Let h be a quadruplet kernel defined by

h(Y(i1,i2;j1,j2)) =
1
2
(Yi1j1Yi2j2 + Yi1j2Yi2j1),

then a closed-form expression for V of Theorem 2.2.7 is

V =
4λ4

c
(F2 − 1) + 4λ4

1 − c
(G2 − 1).

Proof. Using the fact that the (Yij)(i,j)∈N2 are independent conditionally on ξ = (ξi)i∈N and
η = (ηj)j∈N, we find that

Cov(h(Y(1,2;1,2)), h(Y(1,3;3,4))) =
1
4

Cov(Y11Y22 + Y12Y21, Y13Y34 + Y14Y33),

=
1
4
× 4Cov(Y11Y22, Y13Y34),

= E[Y11Y22Y13Y34] −E[Y11Y22]E[Y13Y34],

= E[Y11Y22Y13Y34] −E[Y11Y22]
2,

= E[E[Y11Y22Y13Y34 ∣ ξ, η]] −E[E[Y11Y22 ∣ ξ, η]]
2,

= E[λ4f(ξ1)
2f(ξ2)f(ξ3)g(η1)g(η2)g(η3)g(η4)]

−E[λ2f(ξ1)f(ξ2)g(η1)g(η2)]
2,

= λ4
(F2 − 1),
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and

Cov(h(Y(1,2;1,2)), h(Y(3,4;1,3))) =
1
4

Cov(Y11Y22 + Y12Y21, Y31Y43 + Y33Y41),

=
1
4
× 4Cov(Y11Y22, Y31Y43),

= E[Y11Y22Y31Y43] −E[Y11Y22]E[Y31Y43],

= E[Y11Y22Y31Y43] −E[Y11Y22]
2,

= E[E[Y11Y22Y31Y43 ∣ ξ, η]] −E[E[Y11Y22 ∣ ξ, η]]
2,

= E[λ4f(ξ1)f(ξ2)f(ξ3)f(ξ4)g(η1)
2g(η2)g(η3)]

−E[λ2f(ξ1)f(ξ2)g(η1)g(η2)]
2,

= λ4
(G2 − 1).

The proof is concluded injecting these results in the expression of

V =
4
c

Cov(h(Y(1,2;1,2)), h(Y(1,3;3,4))) +
4

1 − c
Cov(h(Y(1,2;1,2)), h(Y(3,4;1,3)))

given by Theorem 2.2.7.

Lemma 2.H.5. Let Y be a RCE matrix generated by the Poisson-BEDD model, with density λ
and degree functions f and g. Let h1 and h2 be two quadruplet kernels defined by

h1(Y(i1,i2;j1,j2)) =
1
2
(Yi1j1Yi1j2 + Yi2j1Yi2j2),

and
h2(Y(i1,i2;j1,j2)) =

1
2
(Yi1j1Yi2j2 + Yi1j2Yi2j1).

Let Uh1
N ∶= Uh1

mN ,nN
and Uh2

N ∶= Uh2
mN ,nN

, defined by Formula (2.5) and Definition 2.2.1. Set
Ch1,h2 ∶= limN→+∞NCov(Uh1

N , Uh2
N ), then

Ch1,h2 =
2λ4

c
(F3 − F2) +

4λ4

1 − c
F2(G2 − 1).

Proof. First, using Lemma 2.H.1, we deduce that

Cov(Uh1
N , Uh2

N ) =
4
cN

Cov(h1(Y(1,2;1,2)), h2(Y(1,3;3,4)))

+
4

(1 − c)N
Cov(h1(Y(1,2;1,2)), h2(Y(3,4;1,3))) + o(

1
N
) ,

so that

Ch1,h2 =
4
c

Cov(h1(Y(1,2;1,2)), h2(Y(1,3;3,4))) +
4

1 − c
Cov(h1(Y(1,2;1,2)), h2(Y(3,4;1,3))).



U
-statistics

116 Chapter 2. U -statistics on bipartite exchangeable networks

To conclude the proof, we proceed analogously to the proofs of Lemma 2.H.3 and 2.H.4 to derive
the expressions of

Cov(h1(Y(1,2;1,2)), h2(Y(1,3;3,4))) =
1
4

Cov(Y11Y12 + Y21Y22, Y13Y34 + Y33Y14),

=
1
4

Cov(Y11Y12, Y13Y34 + Y33Y14),

=
1
4
× 2Cov(Y11Y12, Y13Y34),

=
1
2
(E[Y11Y12Y13Y34] −E[Y11Y12]E[Y13Y34]) ,

=
1
2
(E[Y11Y12Y13Y34] −E[Y11Y12]E[Y11Y22]) ,

=
1
2
(E[E[Y11Y12Y13Y34 ∣ ξ, η]]

−E[E[Y11Y12 ∣ ξ, η]]E[E[Y11Y22 ∣ ξ, η]]) ,

=
1
2
(E[λ4f(ξ1)

3f(ξ3)g(η1)g(η2)g(η3)g(η4)]

−E[λ2f(ξ1)
2g(η1)g(η2)]E[λ2f(ξ1)f(ξ2)g(η1)g(η2)]) ,

=
1
2
λ4
(F3 − F2),

and

Cov(h1(Y(1,2;1,2)), h2(Y(3,4;1,3))) =
1
4

Cov(Y11Y12 + Y21Y22, Y31Y43 + Y41Y33),

=
1
4
× 4Cov(Y11Y12, Y31Y43),

= E[Y11Y12Y31Y43] −E[Y11Y12]E[Y31Y43],

= E[Y11Y12Y31Y43] −E[Y11Y12]E[Y11Y22],

= E[E[Y11Y12Y31Y43 ∣ ξ, η]]

−E[E[Y11Y12 ∣ ξ, η]]E[E[Y11Y22 ∣ ξ, η]],

= E[λ4f(ξ1)
2f(ξ3)f(ξ4)g(η1)

2g(η2)g(η3)]

−E[λ2f(ξ1)
2g(η1)g(η2)]E[λ2f(ξ1)f(ξ2)g(η1)g(η2)],

= λ4F2(G2 − 1).

Lemma 2.H.6. Let Y be a RCE matrix generated by the Bernoulli-BEDD model, with density
λ and degree functions f and g. Let h be the quadruplet kernel defined by

h(Y(i1,i2;j1,j2)) =
1
4
(Yi1j1Yi1j2Yi2j1(1 − Yi2j2) + Yi1j1Yi1j2Yi2j2(1 − Yi2j1)

+ Yi1j1Yi2j1Yi2j2(1 − Yi1j2) + Yi1j2Yi2j1Yi2j2(1 − Yi1j1)),
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then E[h(Y(1,2;1,2))] = λ
3F2G2(1−λF2G2) and a closed-form expression for V of Theorem 2.2.7

is

V =
4λ6

c
G2

2 [λ
2F4F

2
2G

2
2 − λF4F2G2 − λF3F

2
2G2 +

1
2
F3F2 +

1
4
F4 +

1
4
F 3

2 ]

+
4λ6

1 − c
F 2

2 [λ
2G4G

2
2F

2
2 − λG4G2F2 − λG3G

2
2F2 +

1
2
G3G2 +

1
4
G4 +

1
4
G3

2]

−
4λ6

c(1 − c)
F 2

2G
2
2(1 − λF2G2)

2.

Proof. First, the expectation of h is

E[h(Y(1,2;1,2))] = E[Y11Y12Y21(1 − Y22)]

= E[Y11Y12Y21] −E[Y11Y12Y21Y22]

= E[E[Y11Y12Y21 ∣ ξ, η]] −E[E[Y11Y12Y21Y22 ∣ ξ, η]]

= E[λ3f(ξ1)
2f(ξ2)g(ξ1)

2g(ξ2)] −E[λ4f(ξ1)
2f(ξ2)

2g(ξ1)
2g(ξ2)

2
]

= λ3F2G2 − λ
4F 2

2G
2
2.

Now we derive the expression of V . From the expression given by Theorem 2.2.7, we deduce the
following form

V =
4
c
E[h(Y(1,2;1,2))h(Y(1,3;3,4))] +

4
1 − c

E[h(Y(1,2;1,2))h(Y(3,4;1,3))] −
4

c(1 − c)
E[h(Y(1,2;1,2))]

2.

Since the calculation of E[h(Y(1,2;1,2))h(Y(1,3;3,4))] and E[h(Y(1,2;1,2))h(Y(3,4;1,3))] is completely
symmetric in this case, we only need to prove that

E[h(Y(1,2;1,2))h(Y(1,3;3,4))] = λ
6G2

2 [λ
2F4F

2
2G

2
2 − λF4F2G2 − λF3F

2
2G2 +

1
2
F3F2 +

1
4
F4 +

1
4
F 3

2 ] .

(2.32)
The direct derivation of this quantity is more tedious than technical. Using symmetries and



U
-statistics

118 Chapter 2. U -statistics on bipartite exchangeable networks

exchangeability, one can decompose it.

E[h(Y(1,2;1,2))h(Y(1,3;3,4))] =
1
16

E[(Y11Y12Y21(1 − Y22) + Y11Y12Y22(1 − Y21)

+ Y11Y21Y22(1 − Y12) + Y12Y21Y22(1 − Y11))

× (Y13Y14Y33(1 − Y34) + Y13Y14Y34(1 − Y33)

+ Y13Y33Y34(1 − Y14) + Y14Y33Y34(1 − Y13))]

=
1
4
E[(Y11Y12Y21(1 − Y22) + Y11Y21Y22(1 − Y12))

× (Y13Y14Y33(1 − Y34) + Y13Y33Y34(1 − Y14)))]

=
1
4
(4E[Y11Y12Y21Y22Y13Y14Y33Y34]

− 4E[Y11Y12Y21Y22Y13Y14Y33]

− 4E[Y11Y12Y21Y22Y13Y33Y34]

+ 2E[Y11Y12Y21Y13Y33Y34]

+E[Y11Y12Y21Y13Y14Y33]

+E[Y11Y21Y22Y13Y33Y34]).

Now we derive each simpler expectation.

E[Y11Y12Y21Y22Y13Y14Y33Y34] = E[E[Y11Y12Y21Y22Y13Y14Y33Y34 ∣ ξ, η]]

= E[λ8f(ξ1)
4f(ξ2)

2f(ξ3)
2g(η1)

2g(η2)
2g(η3)

2g(η4)
2
]

= λ8F4F
2
2G

4
2.

E[Y11Y12Y21Y22Y13Y14Y33] = E[E[Y11Y12Y21Y22Y13Y14Y33 ∣ ξ, η]]

= E[λ8f(ξ1)
4f(ξ2)

2f(ξ3)g(η1)
2g(η2)

2g(η3)
2g(η4)]

= λ7F4F2G
3
2.

E[Y11Y12Y21Y22Y13Y33Y34] = E[E[Y11Y12Y21Y22Y13Y33Y34 ∣ ξ, η]]

= E[λ7f(ξ1)
3f(ξ2)

2f(ξ3)
2g(η1)

2g(η2)
2g(η3)

2g(η4)]

= λ7F3F2G
3
2.

E[Y11Y12Y21Y13Y33Y34] = E[E[Y11Y12Y21Y13Y33Y34 ∣ ξ, η]]

= E[λ6f(ξ1)
3f(ξ2)f(ξ3)

2g(η1)
2g(η2)g(η3)

2g(η4)]

= λ6F3F2G
2
2.



U
-s

ta
ti

st
ic

s

2.I. Some U -statistics written with matrix operations 119

E[Y11Y12Y21Y13Y14Y33] = E[E[Y11Y12Y21Y13Y14Y33 ∣ ξ, η]]

= E[λ6f(ξ1)
4f(ξ2)f(ξ3)g(η1)

2g(η2)g(η3)
2g(η4)]

= λ6F4G
2
2.

E[Y11Y21Y22Y13Y33Y34] = E[E[Y11Y21Y22Y13Y33Y34 ∣ ξ, η]]

= E[λ6f(ξ1)
2f(ξ2)

2f(ξ3)
2g(η1)

2g(η2)g(η3)
2g(η4)]

= λ6F 3
2G

2
2.

Injecting these expressions into (2.32), we find the correct expression for E[h(Y(1,2;1,2))h(Y(1,3;3,4))],
which concludes the proof.

Lemma 2.H.7. Let Y be a RCE matrix generated by the Bernoulli-BEDD model, with density
λ and degree functions f and g. For p ≥ 1 and q ≥ 1, let hp,q be the quadruplet kernel defined by

hp,q(Y(i1,...,ip;j1,...,jq)) =
p

∏
u=1

q

∏
v=1

Yiujv .

Then E[hp,q(Y(1,...,p;1,...,q))] = λ
pqF p

q G
q
p.

Proof. Direct derivation gives

E[hp,q(Y(1,...,p;1,...,q))] = E[
p

∏
i=1

q

∏
j=1

Yij]

= E[E[
p

∏
i=1

q

∏
j=1

Yij ∣ ξ, η]]

= E[
p

∏
i=1

q

∏
j=1

E[Yij ∣ ξ, η]]

= E[
p

∏
i=1

q

∏
j=1

λf(ξi)g(ηj)]

= λpq
p

∏
i=1

E[f(ξi)
q
]

q

∏
j=1

E[g(ηj)
p
]

= λpqF p
q G

q
p.

Appendix 2.I Some U-statistics written with matrix operations

We denote for all k ∈ N, Y ⊙k the matrix (or vector) Y elevated to the element-wise power k,
i.e. Y ⊙k

ij = Y
k

ij for all i and j.
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Following formula (2.24), we write all the quadruplet U -statistics considered in the examples
described in Sections 2.3.2 and 2.3.3 as simple operations on matrices. Uh1

N and Uh2
N are already

given in these sections and

Uh3
N =

1
mN(mN − 1)nN

[∣YNY
T

N ∣1 −Tr(YNY
T

N )] ,

Uh4
N =

1
mNnN(nN − 1)

[∣Ỹ T
N ỸN ∣1 −Tr(Ỹ T

N ỸN)] ,

Uh5
N =

1
mNnN

∣YN ∣1,

Uh6
N =

1
mNnN(nN − 1)

[∣Ỹ T
N YN ∣1 −Tr(Ỹ T

N YN)] .

where Tr is the trace operator and Ỹ is defined by Ỹij = Y
2

ij − Yij .

The motif-counting U -statistic of Section 2.3.4 can be written as

Uh7
N =

1
mN(mN − 1)nN(nN − 1)

[∣Y T
N YNY

T
N ∣1 − ∣(Y

⊙2
N )

TYN ∣1 − ∣Y
⊙2

N Y T
N ∣1 +Tr(Y ⊙2

N Y T
N )

−Tr(Y T
N YNY

T
N YN) + ∣(Y

⊙2
N )

TY ⊙2
N ∣1 + ∣Y

⊙2
N (Y

⊙2
N )

T
∣1 −Tr((Y ⊙2

N )
TY ⊙2

N )] .

The kernels hp,q are not quadruplet kernels, but they can also be simply computed if p = 1 or
q = 1. We define respectively r(YN) and c(YN) the vector of row sums (degrees) and the vector
of column sums (degrees) of the matrix YN . For all 1 ≤ i ≤ mN , r(YN)i = ∑

nN
j=1 Yij and for all

1 ≤ j ≤ nN , c(YN)j = ∑
mN
i=1 Yij .

U
h1,p

N = [mN(
nN

p
)]
−1 mN

∑
i=1
(
r(YN)i

p
),

U
hq,1
N = [(

mN

q
)nN]

−1 nN

∑
j=1
(
c(YN)j

q
).

We also notice that

U
h1,1
N = Uh5

N ,

U
h1,2
N = Uh1

N ,

U
h2,1
N = Uh3

N .



U
-s

ta
ti

st
ic

s



H
oeffding

decom
position



H
oe

ffd
in

g
de

co
m

po
si

ti
on

Chapter3
Hoeffding-type decomposition for
U-statistics on bipartite networks

This chapter corresponds to the following article, submitted in a statistical journal:

Le Minh, T., Donnet, S., Massol, F., and Robin, S. (2023). Hoeffding-type decomposition
for U-statistics on bipartite networks. arXiv preprint arXiv:2308.14518. https://doi.

org/10.48550/arXiv.2308.14518

Abstract. We consider a broad class of random bipartite networks, the distribution of which
is invariant under permutation within each type of nodes. We are interested in U -statistics
defined on the adjacency matrix of such a network, for which we define a new type of Hoeffding
decomposition. This decomposition enables us to characterize non-degenerate U -statistics –
which are then asymptotically normal – and provides us with a natural and easy-to-implement
estimator of their asymptotic variance.
We illustrate the use of this general approach on some typical random graph models and use it
to estimate or test some quantities characterizing the topology of the associated network. We
also assess the accuracy and the power of the proposed estimates or tests, via a simulation study.
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3.1. Introduction

Networks are popular objects to represent a set of interacting entities. The last decades have
witnessed an explosion in the number of networks datasets. The fields of application range from
sociology to ecology, from economics to computer science. Understanding the organization of
the network is a first step towards a better insight of the system it represents. Several strategies
exist to study or describe the topology of a network. Many of them are based on the calculation
of one or several numeric quantities (statistics) such as density, clustering coefficients or counts
of given motifs to name but a few. These statistics generally rely on several nodes.

The calculation of these numerical quantities on a given network naturally leads to comparing
them to a reference value, or to the value obtained on another network. The concept of hypothesis
tests naturally meets this expectation. The challenging step of statistical hypothesis testing is
identifying the statistic distribution under the null assumption. In particular, one class of
statistic considered are the U -statistics which, in the context of network analysis, have complex
dependencies.
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Networks and dissociated RCE matrices In networks, entities are represented by nodes
which are linked by edges when they interact. In bipartite networks, the nodes are divided into
two types and the interactions only happen between nodes of the two different types. Some
examples of bipartite networks connect users and items in recommender systems (Zhou et al.,
2007), papers and scientists in authorship networks (Newman, 2001), or plants and pollinators
in ecological interaction networks (Dormann et al., 2009). The networks are naturally encoded
in matrices. In the adjacency matrix Y of a bipartite network (sometimes also called incidence
matrix), the two types of nodes are represented by rows and columns, so that Yij encodes the
interaction between entity i of the first type and entity j of the second type. In binary networks,
Yij = 1 if i and j interact, else Yij = 0. Some networks are weighted, meaning that Yij represents
the intensity of the interaction.

We consider the asymptotic framework where Y is an infinite adjacency matrix and the
adjacency matrix of an observed network of size m × n is the submatrix extracted from the
leading m rows and n columns of Y . Probabilistic models define a joint distribution on the
values of the matrix entries. In random graph models, it is common to assume that the nodes
of the networks are exchangeable, i.e. that the distribution of the network does not change
if its nodes are permuted. For instance, the stochastic block model (Snijders and Nowicki,
1997), the random dot product graph model (Young and Scheinerman, 2007) or the latent space
model (Hoff et al., 2002) are all node-exchangeable. On the corresponding adjacency matrix of
a bipartite network, this assumption implies the row-column exchangeability. Y is said to be
row-column exchangeable (RCE) if for any couple Φ = (σ1, σ2) of finite permutations of N,

ΦY D= Y,

where ΦY ∶= (Yσ1(i)σ2(j))i≥1,j≥1. Many exchangeable random graph models also have a dissoci-
atedness property, i.e. their adjacency matrices are also dissociated (Silverman, 1976; Lauritzen
et al., 2018). A RCE matrix is said to be dissociated if for all m and n, (Yij)1≤i≤m,1≤j≤n is
independent from (Yij)i>m,j>n. In the present work, we only consider RCE dissociated matrices.

U-statistics and Hoeffding decomposition U -statistics are a generalization of the empir-
ical mean to functions of more than one variable. Many estimators fall under the category of
U -statistics. Given a sequence of random variables Y = (Yi)i≥1 numbered with a unique index a
U -statistic Uh

n(Y ) of order n and kernel function h is defined as the following average

Uh
n(Y ) = (

n

k
)
−1

∑
1≤i1<i2<...<ik≤n

h(Yi1 , Yi2 , ..., Yik
),

where h ∶ Rk → R is a symmetric function referred to as the kernel. Denote JnK ∶= {1, ..., n} and
for a set A, Pk(A) the set of all subsets of cardinal k of A. Let i = {i1, ..., ik} ∈ Pk(JnK), then by
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symmetry of h, h(Yi1 , ..., Yik
) does not depend on the order of the elements of i. Therefore, we

will denote h(Yi) ∶= h(Yi1 , ..., Yik
). Finally, the U -statistic Uh

n(Y ) can be formulated as follows:

Uh
n(Y ) = (

n

k
)
−1

∑
i∈Pk(JnK)

h(Yi).

When Y is an exchangeable sequence, h(Yi) has the same distribution for all i ∈ Pk(JnK),
therefore Uh

n(Y ) is an unbiased estimate of h(YJkK). The case where Y is an i.i.d. sequence is
well-studied: the U -statistics are known to be asymptotically normal (Hoeffding, 1948) and can
be used for inference tasks such as estimation and hypothesis testing.

In the i.i.d. case, a useful technique to study the asymptotic behavior of U -statistics is the
Hoeffding decomposition, formalized for the first time in Hoeffding (1961). For 1 ≤ c ≤ k, define
the function ψch ∶ Rc → R as

ψch ∶ (y1, ..., yc)z→ E[h(Y1, ..., Yk) ∣ Y1 = y1, ..., Yc = yc].

Again, by symmetry of h, for some set i ∈ Pc(JnK), we can denote ψch(Yi) ∶= ψ
ch(Yi1 , ..., Yic)

since the order of the elements of i does not matter. Set p0h = E[h(YJkK)] and define recursively

pch(Yi) = ψ
ch(Yi) −

c−1
∑
c′=0

∑
i′∈Pc′(i)

pc′h(Yi′).

for all subsets i ∈ Pc(JnK), for all 1 ≤ c ≤ k. Then, for i ∈ Pk(JnK), h(Yi) can be written

h(Yi) = ∑
0≤c≤k

∑
i′∈Pc(i)

pch(Yi′).

The U -statistic Uh
n can be written as

Uh
n(Y ) =

k

∑
c=0
(
k

c
)P c

nh(Y ),

where for 1 ≤ c ≤ k, P c
nh(Y ) = (

n
c
)
−1
∑i∈Pc(KnJ) p

ch(Yi).

This decomposition is interesting as all the quantities pch(Yi) are orthogonal. By extension
the U -statistics P c

nh are also orthogonal. The leading terms of this decomposition have been
used by Hoeffding (1948) to prove the asymptotic normality of U -statistics. The decomposition
also yields a decomposition of the variance of U -statistics.

By extension, a network U -statistic averages a function h defined over sub-matrices of size
p × q. Let Y be an infinite adjacency matrix from which we observe the first m rows and n

columns. Let h ∶Mp,q(R) → R be a function defined on p × q matrices, 1 ≤ p ≤ m, 1 ≤ q ≤ n,
verifying the following symmetry property: for all (σ1, σ2) ∈ Sp × Sq,

h(Y(iσ1(1),...,iσ1(p);jσ2(1),...,jσ2(q))
) = h(Y(i1,i2,...,ip;j1,j2,...,jq)), (3.1)
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where Y(i1,...,ip;j1,...,jq) is the p × q sub-matrix consisting of the rows and columns of Y indexed
by i1, ..., ip and j1, ..., jq respectively. Therefore, since the order of the elements of i = {i1, ..., ip}
and j = {j1, ..., jq} does not matter, we can denote h(Yi,j) ∶= h(Y(i1,i2,...,ip;j1,j2,...,jq)). Then the
associated U -statistic is

Uh
m,n(Y ) = (

m

p
)
−1
(
n

q
)
−1

∑
i∈Pp(JmK)
j∈Pq(JnK)

h(Yi,j). (3.2)

Note that the assumption on the symmetry of h can be made without loss of generality.
Indeed, if h0 ∶Mp,q(R)→ R is not symmetric, then h ∶Mp,q(R)→ R defined by

h(Y(i1,i2,...,ip;j1,j2,...,jq)) = (p!q!)
−1

∑
(σ1,σ2)∈Sp×Sq

h0
(Y(iσ1(1),...,iσ1(p);jσ2(1),...,jσ2(q))

) (3.3)

verifies Equation (3.1) and leads to the same U -statistic (Uh0
m,n(Y ) = U

h
m,n(Y )).

In the case where Y is a RCE matrix, Le Minh (2023) used a martingale approach to obtain a
weak convergence result for Uh

m,n when m and n grow to infinity at the same rate. Applying this
result requires specific development to get the asymptotic variance. In this paper, we propose an
Hoeffding decomposition-based approach. This strategy has the advantage to provide a method
to estimate the asymptotic variance of the U -statistics. Indeed, obtaining an estimation of the
(asymptotic) variance of U -statistics is a required condition to perform practical inference such
as hypothesis testing. However, it remains a complex task and has been tackled with various
methods in the literature.

Variance estimation of U-statistics (related work) The standard error of U -statistics
is most often computed using resampling techniques such as the jackknife (Arvesen, 1969) and
bootstrap (Efron, 1979; Bickel and Freedman, 1981) estimators of variance. Sen (1960, 1977),
Callaert and Veraverbeke (1981) and Schucany and Bankson (1989) suggested various estimators
of the asymptotic variance. However, all these estimators are biased for both the variance
and the asymptotic variances. Callaert and Veraverbeke (1981); Schucany and Bankson (1989)
also discussed unbiased estimators, but they are computationally more demanding than all the
previous estimators and they find them to have a positive probability of being negative, which
is undesirable.

Contribution We show how U -statistics of size p × q can be used for exchangeable network
inference. In particular, we propose a Hoeffding-type decomposition to identify the asymptotic
distribution of these U -statistics and build a consistent estimator of their variance. For that,
we assume that the matrix dimensions mN and nN grow at the same rate with mN/N → ρ and
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nN/N → 1 − ρ, where ρ ∈]0,1[. For simplification, we denote Uh
N(Y ) ∶= U

h
mN ,nN

(Y ). First, we
show that the distribution of distribution

√
N(Uh

N(Y ) − E[h]) converges to a Gaussian. Next,
we build a consistent estimator for the variance of Uh

N(Y ) and we study its properties.

Outline In Section 3.2, we first extend the Hoeffding decomposition of a sub-graph statistic.
The decomposition we propose is based on the Aldous-Hoover-Kallenberg (AHK) representation.
Section 3.3 exploits this Hoeffding decomposition to demonstrate the asymptotic normality of
the U -statistics we consider. In Section 3.4, we use the Hoeffding decomposition to build an
estimator of the asymptotic variance of the U -statistics. Section 3.5 presents some models for
RCE matrices and kernels that can be interesting for network analysis and comparisons. Section
3.6 and 3.7 are dedicated to simulation studies and an illustration of legislature dataset.

3.2. Hoeffding decomposition of a submatrix U-statistic

Aldous-Hoover-Kallenberg (AHK) representation Corollary 7.23 of Kallenberg (2005)
states that for any dissociated RCE matrix Y , there exists (ξi)i≥1, (ηj)j≥1 and (ζij)i,j≥1 arrays
of i.i.d. random variables with uniform distribution over [0,1] and a real measurable function ϕ
such that for all 1 ≤ i, j <∞, Yij

a.s.
= ϕ(ξi, ηj , ζij). With such a representation, the kernel function

taken on a p× q submatrix indexed by the rows i ∈ Pp(N) and columns j ∈ Pq(N) can be written
h(Yi,j)

a.s.
= hϕ((ξi)i∈i; (ηj)j∈j; (ζij)i∈i

j∈j
), where hϕ is some function depending on h and ϕ.

Note that the AHK decomposition is not unique. In the rest of the paper, we assume that for
each dissociated RCE matrix Y , we have picked an AHK representation, i.e. a suitable function
ϕ, and suitable i.i.d. random variables (ξi)i≥1, (ηj)j≥1 and (ζij)i≥1

j≥1
. In the rest of the paper, we

will write, abusively but without ambiguity,

Yij = ϕ(ξi, ηj , ζij).

and
h(Yi,j) = hϕ((ξi)i∈i; (ηj)j∈j; (ζij)i∈i

j∈j
).

For i′ ∈ P(N) and j′ ∈ P(N), we define the σ-algebra

Ai′,j′ ∶= σ((ξi)i∈i′ , (ηj)j∈j′ , (ζij)i∈i′
j∈j′
).

Therefore, it follows from our notations that

E[h(Yi,j) ∣ Ai′,j′] = E[hϕ((ξi)i∈i; (ηj)j∈j; (ζij)i∈i
j∈j
) ∣ (ξi)i∈i′ ; (ηj)j∈j′ ; (ζij)i∈i′

j∈j′
].
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Now, notice that for fixed i′ and j′, the quantity E[h(Yi,j) ∣ Ai′,j′] only depends on the
elements shared by i and i′ and the elements shared by j and j′, and not on the other elements
of i, i′, j and j′. Suppose r = Card(i ∩ i′) and c = Card(j ∩ j′). Without loss of generality, we
can assume that i′ ∈ Pr(i) and j′ ∈ Pc(j) so E[h(Yi,j) ∣ Ai′,j′] only depends on the r elements of
i′ and the c elements of j′. Therefore, we can define the quantities ψr,ch(Yi′,j′) such that

ψr,ch(Yi′,j′) ∶= E[h(Yi,j) ∣ Ai′,j′],

where the choice of i and j does not matter as long as i′ ⊂ i and j′ ⊂ j. Note that ψr,ch(Yi′,j′) is
simply a notation and not a function of Yi′,j′ . If i′ = ∅ or j′ = ∅, we will still use this notation,
for example

ψr,ch(Yi′,∅) = E[h(Yi,j) ∣ Ai′,∅],

despite Yi′,∅ being undefined.

Hoeffding-type decomposition of the kernel In the following, for elements of N2, (x, y) ≤
(x′, y′) means that both x ≤ x′ and y ≤ y′; (x, y) < (x′, y′) means that, in addition, (x, y) ≠
(x′, y′).

For all i ∈ Pr(N) and j ∈ Pc(N), we define by recursion the following quantity

pr,ch(Yi,j) = ψ
r,ch(Yi,j) − ∑

(0,0)≤(r′,c′)<(r,c)
∑

i′∈Pr′(i)
j′∈Pc′(j)

pr′,c′h(Yi′,j′). (3.4)

Since ψp,qh(Yi,j) = h(Yi,j) for i ∈ Pp(N) and j ∈ Pq(N), (3.4) yields the decomposition of the
kernel function h

h(Yi,j) = ∑
(0,0)≤(r,c)≤(p,q)

∑
i′∈Pr(i)
j′∈Pc(j)

pr,ch(Yi′,j′). (3.5)

Remark 1. From this formula, we see that h(Yi,j) is a linear combination of the
(pr′,c′h(Yi′,j′)) 0≤r′≤p,0≤c′≤q

i′∈Pr′(i),j′∈Pc′(j)
, therefore, this is a linear combination of the (ψr′,c′h(Yi′,j′)) 0≤r′≤r,0≤c′≤c

i′∈Pr′(i),j′∈Pc′(j)
.

Now, we show that for i′ ⊂ i and j′ ⊂ j, pr,ch(Yi′,j′) is actually the projection of h(Yi,j) on
the subspace generated by L2 functions of all the AHK variables of Ai′,j′ , orthogonally to the
sub-spaces generated by L2 functions of all the variables of Ai′′,j′′ , for i′′ ⊂ i′ and j′′ ⊂ j′. This
system of projection is analogous to the Hoeffding decomposition for the kernel functions of
usual U -statistics on i.i.d. data. We prove that the following orthogonality properties hold.

Proposition 3.2.1. Let h1 and h2 two kernel functions of respective size p1 × q1 and p2 × q2.

1. Let (0,0) ≤ (r1, c1) ≤ (p1, q1) and (0,0) ≤ (r2, c2) ≤ (p2, q2) such that (r1, c1) ≠ (r2, c2).
Let (i1, j1) ∈ Pr1(JmK) ×Pc1(JnK) and (i2, j2) ∈ Pr2(JmK) ×Pc2(JnK), then

Cov(pr1,c1h1(Yi1,j1), p
r2,c2h2(Yi2,j2)) = 0.
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2. Let (r, c) such that (0,0) ≤ (r, c) ≤ (p1, q1) and (0,0) ≤ (r, c) ≤ (p2, q2). Let (i1, j1) and
(i2, j2) two elements of Pr(JmK) ×Pc(JnK). If (i1, j1) ≠ (i2, j2), then

Cov(pr,ch1(Yi1,j1), p
r,ch2(Yi2,j2)) = 0.

This proposition relies on the fact that the projections are "conditionnally centered". This
property is given by the following lemma, the proof of which is provided in Appendix 3.B.

Lemma 3.2.2. Let h be a kernel function of size p × q. Let (i, j) ∈ Pr(N) × Pc(N), where
(0,0) < (r, c) ≤ (p, q). For all i ⊂ i and j ⊂ j, we have

E[pr,ch(Yi,j) ∣ Ai,j] = 0.

Proof of Proposition 3.2.1. The two properties are proven similarly and derive from the fact
that (i1, j1) ≠ (i2, j2). This is true for both properties.

Consider any (possibly equal) (r1, c1) and (r2, c2) and associated (i1, j1) ≠ (i2, j2). Then
i1 ≠ i2 or j1 ≠ j2. Without loss of generality, assume that i1 ≠ i2 so there is an element i2 ∈ i2
which is not included in i1. Then

E[pr1,c1h1(Yi1,j1)p
r2,c2h2(Yi2,j2)] = E[E[p

r1,c1h1(Yi1,j1)p
r2,c2h2(Yi2,j2) ∣ A{i2},∅]]

= E[pr1,c1h1(Yi1,j1)E[p
r2,c2h2(Yi2,j2) ∣ A{i2},∅]]

= 0,

since E[pr2,c2h2(Yi2,j2) ∣ A{i2},∅] = 0 from Lemma 3.2.2.

We have proven both properties, since the case (r1, c1) ≠ (r2, c2) corresponds to the first
property and the case (r1, c1) = (r2, c2) corresponds to the second property.

Decomposition of U-statistics Using the Hoeffding-type decomposition of kernel functions
(3.5) the U -statistic (3.2) can be reformulated as:

Uh
m,n(Y ) = (

m

p
)
−1
(
n

q
)
−1

∑
1≤i1<...<ip≤m
1≤j1<...<jq≤n

∑
(0,0)≤(r,c)≤(p,q)

∑
i∈Pr({i1,...,ip})
j∈Pc({j1,...,jq})

pr,ch(Yi,j)

= (
m

p
)
−1
(
n

q
)
−1

∑
(0,0)≤(r,c)≤(p,q)

(
m − r

p − r
)(
n − c

q − c
) ∑

i∈Pr(JmK)
j∈Pc(JnK)

pr,ch(Yi,j)

= ∑
(0,0)≤(r,c)≤(p,q)

(
p

r
)(
q

c
)(
m

r
)
−1
(
n

c
)
−1

∑
i∈Pr(JmK)
j∈Pc(JnK)

pr,ch(Yi,j)

= ∑
(0,0)≤(r,c)≤(p,q)

(
p

r
)(
q

c
)P r,c

m,nh(Y )
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where for all 0 ≤ r ≤ p and 0 ≤ c ≤ q,

P r,c
m,nh(Y ) = (

m

r
)
−1
(
n

c
)
−1

∑
i∈Pr(JmK)
j∈Pc(JnK)

pr,ch(Yi,j)

is the U -statistic of kernel function pr,ch taken on the first m×n rows and columns of the matrix
Y . A consequence of the orthogonality of the projections of h is the orthogonality of these
U -statistics, as stated in the following corollary which is proven in Appendix 3.B.

Corollary 3.2.3. Let h1 and h2 two kernel functions of respective sizes p1 × q1 and p2 × q2. Let
(0,0) ≤ (r1, c1) < (p1, q1) and (0,0) ≤ (r2, c2) < (p2, q2).

1. If (r1, c1) ≠ (r2, c2), then

Cov(P r1,c1
m,n h1(Y ), P

r2,c2
m,n h2(Y )) = 0.

2. If (r1, c1) = (r2, c2) = (r, c), then

Cov(P r,c
m,nh1(Y ), P

r,c
m,nh2(Y )) = (

m

r
)
−1
(
n

c
)
−1

Cov(pr,ch1(YJrK,JcK), p
r,ch2(YJrK,JcK)).

The orthogonality between the P r1,c1
m,n h1(Y ) and P r2,c2

m,n h2(Y ) allows to decompose the covari-
ance of two U -statistics into a few covariance terms.

Corollary 3.2.4.

Cov(Uh1
m,n(Y ), U

h2
m,n(Y ))

= ∑
(0,0)<(r,c)≤(p,q)

(
p

r
)

2
(
q

c
)

2
Cov(P r,c

m,nh1(Y ), P
r,c
m,nh2(Y ))

= ∑
(0,0)<(r,c)≤(p,q)

(
p

r
)

2
(
q

c
)

2
(
m

r
)
−1
(
n

c
)
−1

Cov(pr,ch1(YJrK,JcK), p
r,ch2(YJrK,JcK)).

Corollary 3.2.4 is a direct consequence of Corollary 3.2.3. This result will be helpful when
considering the asymptotic properties of the U -statistics. Indeed, one can see that each co-
variance term is associated with a binomial coefficient depending on different orders of m and
n.

3.3. Asymptotic normality of U-statistics

For the following sections, we will use simplified notations, summarizing the couple (mN , nN)

into N . We recall that Uh
N(Y ) = U

h
mN ,nN

(Y ). We also denote P r,c
N h(Y ) ∶= P r,c

mN ,nN
h(Y ). When
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this is unambiguous, we will omit to mention Y , so we will simply write Uh
N , P r,c

N h, pr,c
(i,j)h and

ψr,c
(i,j)h instead of Uh

N(Y ), P
r,c
N h(Y ), pr,ch(Yi,j) and ψr,ch(Yi,j).

The following theorem is a Central Limit Theorem for Uh
N . Denote vr,c

h ∶= V[ψ
r,c
(JrK,JcK)h].

Theorem 3.3.1. Let Y be a dissociated RCE matrix. Let h be a p× q kernel function such that
E[h(Y(1,...,p;1,...,q))

2] < ∞. Let (mN , nN)N≥1 be a sequence of dimensions for the U -statistics,
such that mN

N ÐÐÐ→
N→∞

ρ and nN

N ÐÐÐ→
N→∞

1 − ρ, where ρ ∈]0,1[. Let (Uh
N)N≥1 be the sequence of

U -statistics associated with h defined by Uh
N ∶= U

h
mN ,nN

. Set Uh
∞ = E[h(Y(1,...,p;1,...,q))] and

V h
=
p2

ρ
v1,0

h +
q2

1 − ρ
v0,1

h .

If V h > 0, then
√
N(Uh

N −U
h
∞)

D
ÐÐÐ→
N→∞

N (0, V h
).

This theorem comes from the decomposition of
√
N(Uh

N −U
h
∞) into three different terms, the

limits of which are given by the following lemmas (proofs in Appendix 3.C).

Lemma 3.3.2. If v1,0
h > 0, then we have

1
√
m

m

∑
i=1
p1,0
({i},∅)h

D
ÐÐÐ→
m→∞

N (0, v1,0
h )

and if v0,1
h > 0, then we have

1
√
n

n

∑
j=1

p0,1
({j},∅)h

D
ÐÐÐ→
n→∞

N (0, v0,1
h )

Lemma 3.3.3. Let AN ∶=
√
N ∑(0,0)<(r,c)≤(p,q)

(r,c)≠(1,0)≠(0,1)
(

p
r
)(

q
c
)P r,c

N h. Then AN
P

ÐÐÐ→
N→∞

0.

Proof of Theorem 3.3.1. We have

Uh
N = ∑

(0,0)≤(r,c)≤(p,q)
(
p

r
)(
q

c
)P r,c

N h

= P 0,0
N h + pP 1,0

N h + qP 0,1
N h + ∑

(0,0)<(r,c)≤(p,q)
(r,c)≠(1,0)≠(0,1)

(
p

r
)(
q

c
)P r,c

N h.

First, we see that P 0,0
N h = Uh

∞. Next, AN being defined in Lemma 3.3.3, we have

√
N(Uh

N −U
h
∞) =

√
Np

mN

mN

∑
i=1

p1,0
({i},∅)h +

√
Nq

nN

nN

∑
j=1

p0,1
(∅,{j})h +AN .
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From Lemma 3.3.3, AN
P

ÐÐÐ→
N→∞

0. So by Slutsky’s theorem,
√
N(Uh

N − U
h
∞) has the same

limiting distribution as the two main terms of this decomposition. From Lemma 3.3.2, this
is the sum of two centered Gaussians of respective variance p2

ρ v
1,0
h and q2

1−ρv
0,1
h . Furthermore,

∑
m
i=1 p

1,0
({i},∅)h and ∑n

j=1 p
0,1
({j},∅)h are independent, so the two Gaussians are independent, which

concludes the proof.

Remark 2. The expression of V h could have been predicted with Corollary 3.2.4. In-
deed, this corollary implies that V[Uh

N ] = ∑(0,0)<(r,c)≤(p,q) (
p
r
)

2
(

q
c
)

2
(

mN

r
)
−1
(

nN

c
)
−1V[pr,c

(JrK,JcK)h],

so limN→∞NV[Uh
N ] = limN→∞ (

p2N
mN

V[p1,0
({1},∅)h] +

q2N
nN

V[p0,1
(∅,{1})h]) =

p2

c V[ψ
1,0
({1},∅)h] +

q2

1−cV[ψ
0,1
(∅,{1})h].

Now, we show that the limiting distribution of a vector of U -statistics is a multivariate normal
distribution under the condition that all the kernel functions are linearly independent. However,
if the kernels functions are of different sizes, the notion of linear independence is unclear. We
need to define the concept of kernel extension to enunciate the corollary.

Definition 3.3.4. Let h be a kernel function of size p × q. Let p′ ≥ p and q′ ≥ q. We define the
extension of h to the size p′ × q′ by h̃ such that for all i′ ∈ Pp′(N) and j′ ∈ Pq′(N),

h̃(Yi′,j′) = [(
p′

p
)(
q′

q
)]

−1

∑
i⊂Pp(i′)
j⊂Pq(j′)

h(Yi,j).

The extension of a kernel actually shares some properties with its kernel, as shown in
Lemma 3.C.1. With this definition, we can define the linear independence of kernel functions
needed for the following corollary as the linear independence of their kernel extensions. Denote
cr,c

hk,hℓ
∶= Cov (ψr,c

(JrK,JcK)hk, ψ
r,c
(JrK,JcK)hℓ). The proof of this corollary can be found in Appendix 3.C.

Corollary 3.3.5. Let Y be a dissociated RCE matrix. Let (h1, h2, ..., hD) be a vector of kernel
functions of respective sizes p1 × q1, p2 × q2, ..., pD × qD such that

1. Theorem 3.3.1 applies for each kernel function, i.e. E[hk(Y(1,2;1,2))
2] < ∞ and Uhk∞ and

V hk are as defined in Theorem 3.3.1 for each kernel hk, 1 ≤ k ≤D,

2. for t ∈ RD, ∑D
k=1 tkh̃k ≡ 0 if and only if t = (0, ...,0), where for 1 ≤ k ≤ D, h̃k is the

extension of hk to size maxk(pk) ×maxk(qk).

Then

√
N

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Uh1
N

Uh2
N

...

UhD
N

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Uh1∞

Uh2∞

...

UhD∞

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

D
ÐÐÐ→
N→∞

N (0,Σh1,...,hD),
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with
Σh1,...,hD = (Chk,hℓ)1≤k,ℓ≤D ,

where Chk,hℓ =
p2

ρ c
1,0
hk,hℓ

+
q2

1−ρc
0,1
hk,hℓ

for all 1 ≤ k, ℓ ≤D (and Chk,hk = V hk).

Although, through the first condition, the theorem requires the kernel functions of
(h1, h2, ..., hD) to be linearly independent, the corresponding U -statistics are not independent
random variables, even asymptotically, because Σh1,...,hD is not a diagonal matrix. One con-
sequence of this corollary is that Theorem 3.3.1 can be extended to differentiable functions of
U -statistics.

Corollary 3.3.6. Let h1, ..., hD be D kernel functions such that Corollary 3.3.5 applies and
Σh1,...,hD = (Chk,hℓ)1≤k,ℓ≤D. Denote θ = (Uh1∞ , ..., U

hD∞ ). Let g ∶ Rd → R be a differentiable
function at θ. Denote ∇g the gradient of g and V δ ∶= ∇g(θ)T Σh1,...,hD∇g(θ). If V δ > 0, then

√
N(g(Uh1

N , ..., UhD
N ) − g(θ))

D
ÐÐÐ→
N→∞

N (0, V δ
).

Proof. The first-order Taylor expansion of g at θ is written

g(Uh1
N , ..., UhD

N ) − g(θ) = ∇g(θ)
T
((Uh1

N , ..., UhD
N ) − θ) + oP (∣∣(U

h1
N , ..., UhD

N ) − θ∣∣) .

From Corollary 3.3.5,
√
N ((Uh1

N , ..., UhD
N ) − θ) converges to a multivariate normal distribution

with asymptotic covariance matrix Σh1,...,hD , so the delta method (see Theorem 3.1 of Van der
Vaart, 2000) can be applied to prove this proposition.

3.4. Estimation of the asymptotic variance of a non-degenerated
U-statistic

Theorem 3.3.1 shows the asymptotic normality of RCE submatrix U -statistics. In order to
perform statistical inference using these U -statistics, one needs to estimate their variances. We
see that

V[Uh
N ] = [(

m

p
)(
n

q
)]
−2

∑
i∈Pp(JmK)
j∈Pq(JnK)

∑
i′∈Pp(JmK)
j′∈Pq(JnK)

Cov (h(Yi,j), h(Yi′,j′)) .

By exchangeability, the covariance between the kernels h(Yi,j) and h(Yi′,j′) only depends on the
number of row and column indices they share. Denote γr,c

h ∶= Cov (h(Yi,j), h(Yi′,j′)) where Yi,j

and Yi′,j′ share r row indices and c column indices: Card(i ∩ i′) = r and Card(j ∩ j′) = c. We get

V[Uh
N ] = [(

m

p
)(
n

q
)]
−1

∑
(0,0)≤(r,c)≤(p,q)

(
p

r
)(
q

c
)(
m − p

p − r
)(
n − q

q − c
)γr,c

h .
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Each γr,c
h , 1 ≤ r ≤ p,1 ≤ c ≤ q, can be estimated using empirical covariance estimators, between

kernel terms that share r rows and c columns and in particular. This leads to an unbiased
estimator of V[Uh

N ] similar to the one discussed by Schucany and Bankson (1989) for U -statistics
of one-dimensional i.i.d. arrays. However, the estimation of these covariances is computationally
intensive and the estimators can take negative values, which can lead to a negative variance
estimation.

One approach is to estimate the asymptotic variance V h. The asymptotic variance formula
given by Theorem 3.3.1 is V h =

p2

ρ v
1,0
h +

q2

1−ρv
0,1
h . Remark that v1,0

h = γ1,0
h and v0,1

h = γ0,1
h . It is

often tedious to analytically calculate V h, especially as it depends on h and the distribution of
Y , see for example Section 3 of Le Minh (2023).

We present here a kernel-free and model-free estimator of V h, taking advantage of the
Hoeffding decomposition. Indeed, we will first define estimators for the conditional expecta-
tions (ψ1,0

({i},∅)h)1≤i≤m and (ψ0,1
(∅,{j})h)1≤j≤n. Then, using the fact that v1,0

h = V[ψ1,0
({1},∅)h] and

v0,1
h = V[ψ0,1

(∅,{1})h], we can derive a positive estimator for V h.

V h is the asymptotic variance of a single U -statistic. Afterwards, we explain how to gen-
eralize this estimator to estimate the asymptotic variance of a function of U -statistics to apply
Corollary 3.3.6.

3.4.1. Some useful notations and results

First, we introduce further notations and a helpful lemma for this section.

For some N > 0, the size of the overall RCE matrix is mN × nN . i being a row index means
that 1 ≤ i ≤mN and j being a column index means that 1 ≤ j ≤ nN .

We denote
Xi,j ∶= h(Yi,j).

For N such that mN ≥ p and nN ≥ q, we further denote

S
p,q
N ∶= {(i, j) ∶ i ∈ Pp(JmN K), j ∈ Pq(JnN K)} ,

so that the set of the kernels taken on all the p× q submatrices can be written as (Xi,j)(i,j)∈Sp,q
N

.

Let i be a set of row indices of size p such that 0 ≤ p ≤ p and j a set of column indices of size
q such that 0 ≤ q ≤ q. The subset of Sp,q

N where i is included in the row indices and j is included
in the column indices is denoted

S
p,q
N,(i,j) ∶= {(i, j) ∈ S

p,q
N ∶ i ⊂ i, j ⊂ j} .
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For example, the set of the kernels taken on all the p × q submatrices containing the columns 1
and 2 can be written (Xi,j)(i,j)∈Sp,q

N,(∅,{1,2})
.

It is obvious that

Card(Sp,q
N ) = (

mN

p
)(
nN

q
) and Card(Sp,q

N,(i,j)) = (
mN − p

p − p
)(
nN − q

q − q
).

Let IK = (i1, ..., iK) be a K-uplet of sets of row indices and JK = (j1, ..., jK
) a K-uplet of

subsets of column indices. Denote

T
p,q

N,(IK ,JK) ∶= S
p,q
N,(i1,j1)

× S
p,q
N,(i2,j2)

× ... × Sp,q
N,(iK ,j

K
).

In the rest of the paper, we will often see averages of the type

T p,q
N (IK , JK) ∶=

1
∏

K
k=1 Card(T p,q

N,(IK ,JK))
∑

T p,q
N,(IK ,JK)

E[Xi1,j1Xi2,j2 ...XiK ,jK
]. (3.6)

As a remark, T p,q
N ((∅), (∅)) = U

h
N .

By exchangeability, the quantities E[X(i1,j1)X(i2,j2)...X(iK ,jK)] do not depend on the row
indices that do not belong to any pairwise intersection of the (ik)1≤k≤K . The same holds for
column indices that do not belong to any pairwise intersection of the (jk)1≤k≤K . Therefore,
assuming mN ≥ Card(∪K

k=1ik) and nN ≥ Card(∪K
k=1j

k
), we can define

α(IK , JK) ∶= E[Xī1 ,̄j1
Xī2 ,̄j2

...XīK ,̄j
K

] (3.7)

where for 1 ≤ k ≤K, the p-uplet īk only consists of elements of ik and elements that are not in any
of the other ik′ , i.e. the īk are of the form īk = ik∪ ĩk where ∩K

k=1ĩk = ∅ and (∪K
k=1ĩk)∩(∪K

k=1ik) = ∅.

The following lemma will be helpful in later proofs as it provides the asymptotic behaviour
of T p,q

N (IK , JK). It shows that these averages can be reduced to one dominant expectation term
given by α(IK , JK) and a remainder vanishing as N grows.

Lemma 3.4.1. Let IK = (i1, ..., iK) and JK = (j1, ..., jK
) be K-uplets of respectively row and

column indices. Let α(IK , JK) defined by (3.7). Let :
● p

k
∶= Card(ik) and q

k
∶= Card(j

k
), for 1 ≤ k ≤K,

● P ∶= ∑K
k=1 pk

and Q ∶= ∑K
k=1 qk

,
● p̄ ∶= Card(∪K

k=1ik) and q̄ ∶= Card(∪K
k=1j

k
).

We have
T p,q

N (IK , JK) = α(IK , JK) +O (m
−1
N + n

−1
N ) .
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3.4.2. Estimation of the conditional expectations

In this paragraph, for all i ∈ JmN K and j ∈ JnN K, we define estimators for ψ1,0
({i},∅)h =

E[h(Y(1,...,p;1,...,q)) ∣ ξi] and ψ0,1
(∅,{j})h = E[h(Y(1,...,p;1,...,q)) ∣ ηj], where ξi and ηj have been defined

in Section 3.2.

Let µ̂h,(i)
N be the average of the kernel function applied on the p × q submatrices containing

the row i. Symmetrically, let ν̂h,(j)
N be the average of the kernel function applied on the p × q

submatrices containing the column j. This means

µ̂
h,(i)
N ∶= (

mN − 1
p − 1

)
−1
(
nN

q
)
−1

∑
(i,j)∈Sp,q

N,({i},∅)

h(Yi,j), (3.8)

and
ν̂

h,(j)
N ∶= (

mN

p
)
−1
(
nN − 1
q − 1

)
−1

∑
(i,j)∈Sp,q

N,(∅,{j})

h(Yi,j). (3.9)

Now, we establish some properties for these estimators.

Proposition 3.4.2. If Y is a RCE matrix, then µ̂h,(i)
N and ν̂h,(i)

N are both conditionally unbiased
ψ1,0
({i},∅)h and ψ0,1

(∅,{j})h, i.e. we have for all N ∈ N :

● E[µ̂h,(i)
N ∣ ξi] = ψ

1,0
({i},∅)h,

● E[ν̂h,(j)
N ∣ ηj] = ψ

0,1
(∅,{j})h.

Proof. The first result can be found directly by the definition of ψ1,0
({i},∅)h, since

E[µ̂h,(i)
N ∣ ξi] = (

mN − 1
p − 1

)
−1
(
nN

q
)
−1

∑
(i,j)∈Sp,q

N,({i},∅)

E[h(Yi,j) ∣ ξi]

= (
mN − 1
p − 1

)
−1
(
nN

q
)
−1

∑
(i,j)∈Sp,q

N,({i},∅)

ψ1,0
({i},∅)h

= ψ1,0
({i},∅)h.

The second result can be obtained analogously.

Proposition 3.4.3. If Y is a RCE matrix, then :
● µ̂

h,(i)
N

a.s.,L1
ÐÐÐ→
N→∞

ψ1,0
({i},∅)h,

● ν̂
h,(j)
N

a.s.,L1
ÐÐÐ→
N→∞

ψ0,1
(∅,{j})h.

As a consequence, µ̂h,(i)
N and ν̂h,(j)

N are consistent estimators for ψ1,0
({i},∅)h and ψ0,1

(∅,{j})h.

Proof. Let N ∈ N and FN(Y ) = σ((µ̂
h,(i)
K (Y ))K≥N). Let ΦN ∈ S

(i)
mN
×SnN

where S(i)mN
is the group

of permutations σi of JmN K such that σi(i) = i. If ΦN = (σi, τ), denote ΦNY = (Yσi(k)τ(j))1≤k≤mN
1≤j≤nN

.
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First, we observe that µ̂h,(i)
N (Y ) = µ̂

h,(i)
N (ΦNY ), so FN(ΦNY ) = FN(Y ). Therefore, by the

exchangeability of Y , we have

Y ∣ FN(Y )
D
= ΦNY ∣ FN(Y ).

This assertion is true for all N ∈ N and ΦN ∈ S
(i)
mN
× SnN

. Now, note that for all (i, j) and
(i′, j′) elements of Sp,q

N,({i},∅), we can always find a permutation ΦN ∈ S(i)mN
× SnN

such that
h(ΦNYi,j) = h(Yi′,j′). Thus, we have E[h(Yi,j) ∣ FN(Y )] = E[h(Yi′,j′) ∣ FN(Y )]. Hence, for any
(i, j) ∈ Sp,q

N+1,({i},∅), we deduce that

E[µ̂h,(i)
N (Y ) ∣ FN+1(Y )] = E[h(Y(i,j)) ∣ FN+1(Y )]

= E[µ̂h,(i)
N+1(Y ) ∣ FN+1(Y )]

= µ̂
h,(i)
N+1(Y ).

Therefore, µ̂h,(i)
N (Y ) is a backward martingale with respect to FN(Y ) (see Appendix 3.A).

By Theorem 3.A.3, we have that µ̂
h,(i)
N (Y )

a.s.,L1
ÐÐÐ→
N→∞

E[µ̂h,(i)
1 (Y ) ∣ F∞(Y )], where F∞(Y ) =

⋂
∞
N=1FN(Y ).

Finally, F∞(Y ) = σ(ξi) so Proposition 3.4.2 implies that E[µ̂h,(i)
1 (Y ) ∣ F∞(Y )] = ψ

1,0
({i},∅)h(Y )

and thus, µ̂h,(i)
N (Y )

a.s.,L1
ÐÐÐ→
N→∞

ψ1,0
({i},∅)h(Y ).

3.4.3. Estimation of V h

Finally, since we have defined estimators for ψ1,0
({i},∅)h and ψ0,1

(∅,{j})h, natural estimators for
v1,0

h = V[ψ1,0
({1},∅)h] and v0,1

h = V[ψ0,1
(∅,{j})h] can be given by :

v̂h;1,0
N = (

mN

2
)
−1

∑
1≤i1<i2≤mN

(µ̂
h,(i1)
N − µ̂

h,(i2)
N )2

2

v̂h;0,1
N = (

nN

2
)
−1

∑
1≤j1<j2≤nN

(ν̂
h,(j1)
N − ν̂

h,(j2)
N )2

2

Then, an estimator for V h is

V̂ h
N ∶=

p2

ρ
v̂h;1,0

N +
q2

1 − ρ
v̂h;0,1

N .

The following theorem shows that V̂ h
N is a consistent estimator for V h.

Theorem 3.4.4. We have v̂h;1,0
N

P
ÐÐÐ→
N→∞

v1,0
h and v̂h;0,1

N

P
ÐÐÐ→
N→∞

v0,1
h . As a consequence, V̂ h

N

P
ÐÐÐ→
N→∞

V h.
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Before proving this theorem, we first need to highlight some properties of v̂h;1,0
N and v̂h;0,1

N ,
which are proven in Appendix 3.D.

Proposition 3.4.5. We have E[v̂h;1,0
N ] = v1,0

h + O (N−1) and E[v̂h;0,1
N ] = v0,1

h + O (N−1). As a
consequence, v̂h;1,0

N and v̂h;0,1
N are asymptotically unbiased estimators for v1,0

h and v0,1
h .

Proposition 3.4.6. We have V[v̂h;1,0
N ] = O (N−1) and V[v̂h;0,1

N ] = O (N−1).

Proof of Theorem 3.4.4. For some ϵ > 0, it follows from Proposition 3.4.5 that for large enough
values of N , ∣E[v̂h;1,0

N ] − v1,0
h ∣ < ϵ. The triangular inequality and Chebyshev’s inequality states

that

P (∣v̂h;1,0
N − v1,0

h ∣ > ϵ) ≤ P (∣v̂
h;1,0
N −E[v̂h;1,0

N ]∣ ≥ ϵ − ∣E[v̂h;1,0
N ] − v1,0

h ∣) ≤
V[v̂h;1,0

N ]

(ϵ − ∣E[v̂h;1,0
N ] − v1,0

h ∣)
2 .

Applying Propositions 3.4.5 and 3.4.6 to the right-hand side of the inequality ensures that
P (∣v̂h;1,0

N − v1,0
h ∣ > ϵ)ÐÐÐ→N→∞

0 which concludes the proof.

With Theorem 3.4.4, it is possible to use V̂ h
N for statistical inference tasks when plugged-in

in place of V h, a asymptotic normality result similar to Theorem 3.3.1 holds.

Corollary 3.4.7. If V h > 0, then
¿
Á
ÁÀ

N

V̂ h
N

(Uh
N −U

h
∞)

D
ÐÐÐ→
N→∞

N (0,1).

Proof. First, Theorem 3.3.1 ensures that
√

N
V̂ h

N

(Uh
N − U

h
∞)

D
ÐÐÐ→
N→∞

N (0,1). Second, it can be

derived from Theorem 3.4.4 that
√

V h

V̂ h
N

P
ÐÐÐ→
N→∞

1.

Then, applying Slutsky’s theorem, we get
√

N
V̂ h

N

(Uh
N −U

h
∞) =

√
V h

V̂ h
N

×
√

N
V h (U

h
N −U

h
∞)

D
ÐÐÐ→
N→∞

N (0,1).

3.4.4. Calculation of the estimator

In practice, the computation of the estimators (µ̂h,(i)
N )1≤i≤mN

and (ν̂h,(j)
N )1≤j≤nN

using their
definition is pretty tedious, as they are sums of O(Np+q−1) terms. The computation cost of V̂ h

N

is then O(Np+q) which is of same order as the computation of Uh
N when naively applying the

kernel function to all the p × q submatrices and averaging.
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However, one would actually try to avoid to compute Uh
N in that way if possible, as for

simple kernels, it is possible to write Uh
N in the form of operation on matrices, which are more

optimized, say O(Na+b) with a ≤ p and b ≤ q.

In these cases, it might be time-efficient to compute V̂ h
N =

p2

ρ v̂
h;1,0
N +

q2

1−ρ v̂
h;0,1
N with the following

alternative form.

Proposition 3.4.8. An alternative form for v̂h;1,0
N and v̂h;0,1

N is given by

v̂h;1,0
N =

(mN − p)
2

p2(mN − 1)

mN

∑
i=1
(Uh

N −U
h,(−i,∅)
N )

2

and
v̂h;0,1

N =
(nN − q)

2

q2(nN − 1)

nN

∑
j=1
(Uh

N −U
h,(∅,−j)
N )

2
,

where
U

h,(−i,∅)
N ∶= [(

mN − 1
p
)(
nN

q
)]
−1

∑
i∈Pp(JmN K/{i})

j∈Pq(JnN K)

h(Yi,j)

and
U

h,(∅,−j)
N ∶= [(

mN

p
)(
nN − 1
q
)]
−1

∑
i∈Pp(JmN K)

j∈Pq(JnN K/{j})

h(Yi,j).

Proof. The relations are obtained from the definition of v̂h;1,0
N and v̂h;0,1

N and noticing that

(
mN − 1
p − 1

)(
nN

q
)µ̂

h,(i)
N = (

mN

p
)(
nN

q
)Uh

N − (
mN − 1

p
)(
nN

q
)U

h,(−i,∅)
N

and
(
mN

p
)(
nN − 1
q − 1

)ν̂
h,(j)
N = (

mN

p
)(
nN

q
)Uh

N − (
mN

p
)(
nN − 1
q
)U

h,(∅,−j)
N .

Remark. This is one alternative method to compute V̂ h
N , but not necessarily the optimal one.

With this form, the computational cost of V̂ h
N is O(Na+b+1). This can be outperformed by the

naive method in some specific cases, e.g. when a = p and b = q. This method is particularly fit
when a + b + 1 < p + q.

Remark. The alternative form of v̂h;1,0
N and v̂h;0,1

N is reminiscent of the jackknife estimator for
the variance of U -statistics of one-dimensional arrays (Arvesen, 1969), but the two are well
distinct. In the case where Y is a one-dimensional array, the U -statistic associated to the kernel
h ∶ Rp → R is

Uh
N = (

N

p
)

−1
∑

i∈Pp(JNK)
h(Xi).
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The jackknife estimator of the asymptotic variance of this U -statistic is

V̂ h,J
N = (N − 1)

N

∑
i=1
(Uh

N −U
h,(−i)
N )

2

where
U

h,(−i)
N = (

N

p
)

−1
∑

i∈Pp(JNK/{i})
h(Xi).

In fact, our estimator is closer to Sen’s estimator of the asymptotic variance (Sen, 1960, 1977),
which depends on the kernel size and is related to the jackknife estimator V̂ h,S

N = (N − k)2/(N −

1)2V̂ h,J
N . However, it is unclear how these estimators could be translated in a two-dimensional

setup where Y is a matrix instead of a vector, especially how to define the analog of Uh,(−i)
N .

3.4.5. Extension to functions of U-statistics

In the case of a function of U -statistics g(Uh1
N , ..., UhD

N ), Corollary 3.3.6 applies and the
asymptotic variance to be estimated is V δ = ∇g(θ)T Σh1,...,hD∇g(θ) ≠ 0, where θ = (Uh1∞ , ..., U

hD∞ ).
Similar to the estimator for the asymptotic variance of V h, we suggest an estimator for the
covariance matrix Σh1,...,hD = (Chk,hℓ)1≤k,ℓ≤D.

For each kernel hk, 1 ≤ k ≤ D, let µ̂hk,(i)
N and ν̂

hk,(j)
N be the respective estimators of the

conditional expectations ψ1,0
({i},∅)hk and ψ0,1

(∅,{j})hk, as defined in equations (3.8) and (3.9).

Now define

ĉhk,hℓ;1,0
N ∶= (

mN

2
)
−1

∑
1≤i1<i2≤mN

(µ̂
hk,(i1)
N − µ̂

hk,(i2)
N )(µ̂

hℓ,(i1)
N − µ̂

hℓ,(i2)
N )

2

and

ĉhk,hℓ;0,1
N ∶= (

nN

2
)
−1

∑
1≤j1<j2≤nN

(ν̂
hk,(j1)
N − ν̂

hk,(j2)
N )(ν̂

hℓ,(j1)
N − ν̂

hℓ,(j2)
N )

2
.

Then, for two kernels hk and hℓ,

Ĉhk,hℓ

N ∶=
p2

ρ
ĉhk,hℓ;1,0

N +
q2

1 − ρ
ĉhk,hℓ;0,1

N ,

is an estimator of the asymptotic covariance term Chk,hℓ .

With a similar proof as for Theorem 3.4.4, the following theorem ensures the consistency of
this estimator.

Theorem 3.4.9. For two kernel functions hk and hℓ, we have ĉhk,hℓ;1,0
N

P
ÐÐÐ→
N→∞

c1,0
hk,hℓ

and

ĉhk,hℓ;0,1
N

P
ÐÐÐ→
N→∞

c0,1
hk,hℓ

. As a consequence, Ĉhk,hℓ

N

P
ÐÐÐ→
N→∞

Chk,hℓ.
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Thus, for linearly independent kernel functions (h1, ..., hD), the entries of the ma-
trix Σ̂h1,...,hD

N ∶= (Ĉhk,hℓ

N )
1≤k,ℓ≤D

converge to the entries of Σh1,...,hD . Set V̂ δ
N ∶=

∇g(Uh1
N , ..., UhD

N )
T Σ̂h1,...,hD

N ∇g(Uh1
N , ..., UhD

N ), then we have the following straightforward result.

Corollary 3.4.10. We have V̂ δ
N

P
ÐÐÐ→
N→∞

V δ.

Finally, the plug-in corollary also stands.

Corollary 3.4.11. If V δ > 0, then
¿
Á
ÁÀ

N

V̂ δ
N

(g(Uh1
N , ..., UhD

N ) − g(θ))
D
ÐÐÐ→
N→∞

N (0,1).

3.5. RCE models, kernel functions and network comparison

3.5.1. Examples of RCE models

Bipartite Expected Degree Distribution model The Bipartite Expected Degree Distri-
bution (BEDD) model, suggested by Ouadah et al. (2022), is a binary graph model characterised
by two distributions from which the row and column nodes draw a weight. The probability of a
connection between two nodes is fully determined by the corresponding row and column weight
distributions. The distribution of a graph following a BEDD model can be written using latent
variables (ξi)i≥1 and (ηj)j≥1 corresponding to the row and column nodes of the graph :

ξi, ηj
iid
∼ U[0,1]

Yij ∣ ξi, ηj ∼ B(λf(ξi)g(ηj)).
(3.10)

where
● f and g are positive, càdlàg, nondecreasing, bounded and normalized (∫ f = ∫ g = 1) real

functions [0,1]→ R+,
● λ is a positive real number such that λ ≤ ∥f∥−1

∞ ∥g∥
−1
∞ ,

● B is the Bernoulli distribution.
The BEDD model is a RCE version of the Expected Degree Sequence model of Chung and

Lu (2002) but in the BEDD, the row weights f(ξi) and column weights g(ηj) are exchangeable.
Indeed, f and g characterize the weight distributions of the row and column nodes whereas the
weights are fixed in the Expected Degree Sequence model. The triplet (λ, f, g) is called the
BEDD parameters.
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Latent Block model The Latent Block model (LBM) (Govaert and Nadif, 2003) is a binary
graph model characterised by a partition of row and column nodes in several groups. It can be
considered as a bipartite extension of the Stochastic Block model (Nowicki and Snijders, 2001).
The probability of interaction between two nodes is fully determined by the groups to which
they belong. All the nodes have the same probability to belong to each group. The distribution
of a LBM is most commonly written using independent latent variables for the node attribution
in a group (Zi)i≥1 and (Wj)j≥1 corresponding to the row and column nodes of the graph :

Zi
iid
∼ M(1; α)

Wj
iid
∼ M(1; β)

Yij ∣ Zi = k,Wj = ℓ ∼ B(πkℓ),

(3.11)

where α = (α1, ..., αK) and β = (β1, ..., βL) are the probability vectors of the rows and the
columns and π = (πkℓ)1≤k≤K,1≤ℓ≤L ∈ [0,1]KL is a matrix of probabilities.

The LBM is a RCE model, since the group attribution variables of the nodes are exchange-
able.

W-graph model Let w be a function of [0,1]2 → [0,1]. The W-graph model associated to w
is defined by

ξi, ηj
i.i.d.
∼ U[0,1]

Yij ∣ ξi, ηj ∼ B (w(ξi, ηj)) ,
(3.12)

w is sometimes referred to as a graphon. For identification reasons, we assume ∫ w(⋅, η)dη and

∫ w(ξ, ⋅)dξ to be càdlàg, nondecreasing and bounded.

Any RCE model can be written as a W-graph model (Diaconis and Janson, 2008) so
can the BEDD model and the LBM be expressed with a graphon. For the BEDD model,
w(ξi, ηj) = λf(ξi)g(ηj) where f and g are those of Equation (3.10). For the LBM, w(ξi, ηj) =

∑k,ℓ πkℓ1{s(ξi) = k}1{t(ηj) = ℓ} where s(ξi) = 1 +∑K
k=1 1{ξi > ∑

k
k′=1 αk′}, t(ηj) = 1 +∑L

ℓ=1 1{ηj >

∑
ℓ
ℓ′=1 βℓ′} and α, β and π are those of Equation (3.11).

Extension to weighted graphs All the models presented above are defined for binary graphs.
However, one can extend it to weighted graphs by switching the Bernoulli distributions with
another. In particular, the Poisson distribution is particularly fitted for count values in N :

ξi, ηj
i.i.d.
∼ U[0,1]

Yij ∣ ξi, ηj ∼ P (w(ξi, ηj)) ,
(3.13)

where w ∶ [0,1]2 → R+ is the graphon of this model. Similarly, one can define a Poisson-BEDD
model or Poisson-LBM.
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3.5.2. Examples of kernel functions

We present three examples of statistics which are U -statistics or functions of U -statistics.
Sometimes, a kernel function h has a long expression, especially when it is the symmetric version
of some simpler function h0, as in (3.3). In this case, we introduce the kernels of interest with h0

instead of h, but the U -statistics and asymptotic results always apply to the symmetric version
h.

Motif counts Motifs are the name given to small subgraphs. Their occurrences in the com-
plete network can be counted. Motif counts are useful statistics for random graphs as they
provide information on the network local structure (Shen-Orr et al., 2002; Kashtan et al., 2004).
Many random network models hinge on motif frequencies. In the Exponential Random Graph
Model (Frank and Strauss, 1986), motif frequencies are sufficient statistics. The dk-random
graph model (Orsini et al., 2015) also largely relies on motif frequencies.

Their asymptotic properties are widely studied and a large numbers of studies use motif
counts to perform statistical tests (Reinert and Röllin, 2010; Bickel et al., 2011; Bhattacharyya
and Bickel, 2015; Coulson et al., 2016; Gao and Lafferty, 2017; Maugis et al., 2020; Naulet et al.,
2021; Ouadah et al., 2022). Our framework is particularly well adapted to the use of motif
counts for statistical tests as frequencies are in fact U -statistics with kernel functions of the
same size as the motifs.

For many applications, motifs are considered as elementary building blocks which can be
specifically interpreted. This is the case in molecular biology (Shen-Orr et al., 2002; Pržulj
et al., 2004; Ali et al., 2014), neurology (Zhao et al., 2011), sociology (Bearman et al., 2004),
evolution (Przytycka, 2006) and ecology (Stouffer et al., 2007; Baker et al., 2015). In particular,
Figure 3 of Simmons et al. (2019) lists all the bipartite motifs consisting of from 2 to 6 nodes.
For example, their motif 6 represents a 2× 2 clique, where every node is connected to all others
(Figure 3.1). Their motif 14 represents a path between two column nodes, passing through
another column node and two row nodes (Figure 3.1). The latter indicates an indirect interaction
between the row nodes, hinging on the middle row node. Lanuza et al. (2023) found that motif 6
is over-represented in plant-pollinator interaction networks, while motif 14 is under-represented,
compared to Erdös-Rényi graphs of the same density.

These motifs can be counted with Uh6
N and Uh14

N the U -statistics associated to the kernels h6

and h14, that we introduce as the symmetric version of the following functions :

h0
6(Y(i1,i2;j1,j2)) = Yi1j1Yi1j2Yi2j1Yi2j2 ,

h0
14(Y(i1,i2;j1,j2,j3)) = Yi1j1Yi1j2Yi2j2Yi2j3(1 − Yi2j1)(1 − Yi1j3). (3.14)
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Figure 3.1 – Motifs 6 (left) and 14 (right), counted by Uh6
N and Uh14

N

Remark. With this example, it is very apparent that introducing simple, non-symmetric kernel
functions and then symmetrizing them is way simpler than introducing symmetric kernel func-
tions. h0

6 is already symmetric, so h6 = h
0
6. However, h0

14 is not symmetric and one can sum over
all the permutations of the indices to make it symmetric using formula (3.3). Because of the
automorphisms of motif 14, it involves only 6 permutations instead of 2!3! = 12.

h14(Y(i1,i2;j1,j2,j3))

=
1
6
Yi1j1Yi1j2Yi2j2Yi2j3(1 − Yi2j1)(1 − Yi1j3) +

1
6
Yi1j2Yi1j3Yi2j3Yi2j1(1 − Yi1j1)(1 − Yi2j2)

+
1
6
Yi1j3Yi1j1Yi2j1Yi2j2(1 − Yi1j2)(1 − Yi2j3) +

1
6
Yi2j1Yi2j2Yi1j2Yi1j3(1 − Yi1j1)(1 − Yi2j3)

+
1
6
Yi2j2Yi2j3Yi1j3Yi1j1(1 − Yi2j1)(1 − Yi1j2) +

1
6
Yi2j3Yi2j1Yi1j1Yi1j2(1 − Yi2j2)(1 − Yi1j3).

Using Corollary 3.4.7, the following studentized statistics converge to a standard normal
distribution

Z6
N ∶=

¿
Á
ÁÀ

N

V̂ h6
N

(Uh6
N −U

h6
∞ )

D
ÐÐÐ→
N→∞

N (0,1),

Z14
N ∶=

¿
Á
ÁÀ

N

V̂ h14
N

(Uh14
N −Uh14

∞ )
D
ÐÐÐ→
N→∞

N (0,1).

Product graphon The W -graph model encompasses all the dissociated RCE models. One
can make use of this model to compare the form of the graphon that has generated a graph to
a known form. One interesting form is the product form, which corresponds to an absence of
specific interaction between row nodes and column nodes. For example, one can normalize the
graphon in the Poisson W -graph model described by (3.13) such that

Yij ∣ ξi, ηj ∼ P(λw̄(ξi, ηj)),

where λ > 0 and ∬ w̄ = 1. Call w̄ a normalized graphon. Define f and g as the marginals of w̄,
i.e.

f = ∫ w̄(⋅, η)dη g = ∫ w̄(ξ, ⋅)dξ. (3.15)
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A density-free dissimilarity measure between a graphon and its corresponding product form
could be the quantity d(w̄) defined as

d(w̄) ∶= ∣∣w̄ − fg∣∣22 =∬ (w̄(ξ, η) − f(ξ)g(η))2 dξdη. (3.16)

Observe that d(w̄) = 0 if and only if w̄ is of product form, e.g. w̄(ξ, η) = f(ξ)g(η) almost
everywhere in [0,1]2. In this case, the W -graph model (3.5.2) is a BEDD model and f and g

have the same role as in (3.10).

We suggest an estimator for d(w̄). Let hA, hB, hC and hD be kernel functions of respective
size 2 × 2, 1 × 2, 2 × 1 and 1 × 1 defined as in Table 3.1. These kernel functions are linearly
independent, so Corollary 3.3.5 applies to the associated U -statistics (UhA

N , UhB
N , UhC

N , UhD
N ),

and they are jointly asymptotically normal with asymptotic covariance matrix ΣhA,hB ,hC ,hD .

h h0(Y(i1,...,ir;j1,...,jc)) E[h(Y(i1,...,ir;j1,...,jc))]

hA h0
A,1(Y(i1,i2;j1,j2)) − 2h0

A,2(Y(i1,i2;j1,j2)) λ3
∬ w̄(ξ, η)(w̄(ξ, η) − 2f(ξ)g(η))dξdη

hA,1 Yi1j1(Yi1j1 − 1)Yi2j2 λ3
∬ w̄(ξ, η)2dξdη

hA,2 Yi1j1Yi1j2Yi2j2 λ3
∬ w̄(ξ, η)f(ξ)g(η)dξdη

hB Yi1j1Yi1j2 λ2
∫ f(ξ)

2dξ

hC Yi1j1Yi2j1 λ2
∫ g(η)

2dη

hD Yi1j1 λ

Table 3.1 – Kernel functions used for the estimation of d(w̄). The expectations are given by
Lemma 3.E.1 in Appendix.

We define the estimator of d(w̄) as d̂N = t(UhA
N , UhB

N , UhC
N , UhD

N ) ∶= UhA
N /(U

hD
N )

3 +

UhB
N UhC

N /(U
hD
N )

4. We have t(UhA∞ , UhB∞ , UhC∞ , UhD∞ ) = ∬ w̄(ξ, η)(w̄(ξ, η) − 2f(ξ)g(η))dξdη +

∫ f(ξ)
2dξ × ∫ g(η)

2dη = d(w̄). Then, Corollary 3.4.11 ensures that the studentized statistic
converge to a standard normal distribution

Zd
N ∶=

¿
Á
ÁÀ

N

V̂ d
N

(d̂N − d(w̄))
D
ÐÐÐ→
N→∞

N (0,1).
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where V̂ d
N = ∇t(U

hA
N , UhB

N , UhC
N , UhD

N )
T Σ̂hA,hB ,hC ,hD

N ∇t(UhA
N , UhB

N , UhC
N , UhD

N ) and Σ̂hA,hB ,hC ,hD

N is
defined as in Corollary 3.4.11.

Heterogeneity of the rows of a network The degree distributions of a network hold sig-
nificant information about its topology. For a binary network, denote Di ∶= ∑j Yij the degree of
the i-th row, then E[Di ∣ ξi] = f(ξi)E[Di], where f is given by (3.15). Therefore, the marginals
f and g accounts for the expected relative degree distributions of the binary network, which is
known to characterize networks. In the BEDD model, these distributions (and the density of
the network) fully characterize the model.

Although the sum of the edge weights and the number of edges stemming from a nodes are
equivalent for binary networks, for weighted networks, they are two different quantities. The
sum of the edge weights stemming from a node is sometimes called its strength (Barrat et al.,
2004), which do not depend entirely on the number of edges. In a network with weighted edges,
f(ξi) corresponds to expected relative strength of the i-th row node, instead of its expected
relative degree.

One way to characterize the degree/strength distributions of a network is to calculate their
variance. In particular, the variance of the degree distribution of a network quantifies its hetero-
geneity (i.e. the unbalance between strongly interacting nodes and the others) and can be used as
an index to characterize networks Snijders (1981). In our framework with random graph models,
rather than directly study the empirical distribution of row degrees/strengths, one would like
to retrieve information on f and g, the distributions of the expected degrees/strengths specified
by the model. For the BEDD model, f and g are directly given by the model. The variance of
the row expected relative degree/strength distribution is F2 − 1, where F2 ∶= ∫ f

2(ξ)dξ.

F2 can be estimated using the estimator F̂2,N ∶= κ(U
h1
N , Uh2

N ) = U
h1
N /U

h2
N , using the U -

statistics associated to the submatrix kernels functions h1 and h2 defined as

h1(Y(i;j1,j2)) = Yij1Yij2

and
h2(Y(i1,i2;j1,j2)) =

1
2
(Yi1j1Yi2j2 + Yi1j2Yi2j1).

By Lemma 3.E.2 in Appendix, we have Uh1∞ = λ
2F2 and Uh2∞ = λ

2. Given that ∇κ(Uh1
N , Uh2

N ) =

(1/Uh2
N ,−Uh1

N /(U
h2
N )

2), the application of Corollary 3.4.11 yields

ZF2
N ∶=

¿
Á
ÁÀ

N

V̂ F2
N

(F̂2,N − F2)
D
ÐÐÐ→
N→∞

N (0,1), (3.17)

where

V̂ F2
N =

1
(Uh2

N )
2
V̂ h1

N −
2F̂2,N

(Uh2
N )

2
Ĉh1,h2

N +
(F̂2,N)

2

(Uh2
N )

2
V̂ h2

N .
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In a similar way, one can define the analogous estimator Ĝ2,N for G2 ∶= ∫ g
2(η)dη and its

associated variance estimator to quantify the heterogeneity of the columns of networks.

3.5.3. Network comparison

Network comparison has a long history in network analysis literature (Emmert-Streib et al.,
2016; Tantardini et al., 2019). Few comparison methods use random network models (Asta and
Shalizi, 2014; Maugis et al., 2020; Le Minh, 2023). However, there are several advantages to using
model-based approaches. Indeed, random models define a probability distribution of networks
which can be used to derive statistical guarantees. Also, models can be used to control the
sources of heterogeneity in networks. The comparison can be made with respect to a quantity
of interest, which makes it easier to interpret. Now, we show how to define a test statistic for
model-based network comparison with our framework. Naturally, U -statistics define network
statistics characterizing a network. They can be used to analyze a single network, but their use
is easily extended to compare different networks.

Let Y A and Y B be two independent networks of respective sizes mA
N × n

A
N and mB

N × n
B
N .

Define a network quantity of interest θ. These two networks are generated by two models, leading
to different values θA and θB of this quantity for the two models. Let θ̂N be an estimator for
this quantity of interest. If θ̂N is a U -statistic or a function of U -statistics, then as previously,
we have both

√
N(θ̂N(Y

A
) − θA

)
D
ÐÐÐ→
N→∞

N (0, V A
)

and
√
N(θ̂N(Y

B
) − θB

)
D
ÐÐÐ→
N→∞

N (0, V B
),

where V A and V B are the asymptotic variances.

To compare θA and θB, we can confront the test hypotheses H0 ∶ θ
A = θB and H1 ∶ θ

A ≠ θB.
Because Y A and Y B are independent, the previous convergence results give

√
N

V A + V B
(δ̂N(Y

A, Y B
) − (θA

− θB
))

D
ÐÐÐ→
N→∞

N (0,1),

where δ̂N(Y
A, Y B) ∶= θ̂N(Y

A)− θ̂N(Y
B). Therefore, using the consistent estimators V̂ A

N and V̂ B
N

of the asymptotic variances, the test statistic

ZN(Y
A, Y B

) ∶=

¿
Á
ÁÀ

N

V̂ A
N + V̂

B
N

δ̂N(Y
A, Y B

)

admits the convergence result

ZN(Y
A, Y B

) −

¿
Á
ÁÀ

N

V̂ A
N + V̂

B
N

(θA
− θB
)

D
ÐÐÐ→
N→∞

N (0,1).
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Under H0, we have θA−θB = 0, so ZN(Y
A, Y B) converges in distribution to a standard Gaussian

variable.

3.6. Simulations

In this section, we illustrate our theoretical results, in particular Corollaries 3.4.7 and 3.4.11,
using the previous examples of graph models and kernel functions. For each example of kernel
function, we check the asymptotic normality of the studentized statistic for networks simulated
under different configurations (different models, values of N and ρ). We give the resulting Q-Q
plots. We also examine the coverage probabilities of the confidence intervals built with the
estimates or the standard deviations of the statistics, depending on whether they are fitted for
estimation or statistical testing.

3.6.1. Motif counts

Model I This graph model is a LBM with 2 row groups and 2 columns groups of equal
proportion. Using the notations of (3.11), this means α = β = (0.5,0.5). The probability matrix
π has size 2 × 2. We set πkℓ = 0.5 for all 1 ≤ k, ℓ ≤ 2 except π11 = 0.95.

Under Model I, for each value N ∈ {2k/2 ∶ 10 ≤ k ≤ 22} and ρ ∈ {1/8,1/2}, we have simulated
K = 500 networks of size mN ×nN where mN = ⌊ρN⌋ and nN = N −mN . The relative frequencies
of motifs 6 and 10 of Simmons et al. (2019) are respectively given by Uh6

N and Uh14
N where h6

and h14 were defined by (3.14).

The Q-Q plots of the studentized statistic associated to h6 and h14 are given in Figures 3.2
and 3.3. For ρ = 1/2, we observe that the empirical distribution of both statistics converge
and become close to a normal distribution as N ≳ 128. Figure 3.4 gives the respective coverage

probabilities for Uh6∞ and Uh14
∞ of the intervals [Uh6

N −Φ(1 − α
2 )
√

N

V̂
h6

N

, Uh6
N +Φ(1 − α

2 )
√

N

V̂
h6

N

] and

[Uh14
N −Φ(1 − α

2 )
√

N

V̂
h14

N

, Uh14
N +Φ(1 − α

2 )
√

N

V̂
h14

N

] respectively, where Φ is the quantile function

of the standard normal distribution. The coverage probabilities converge to α but with different
speeds depending on the motif. We also observe that a larger number of nodes is needed to
reach the target coverage probabilities with ρ = 1/8 (rectangular matrix) than ρ = 1/2 (square
matrix).
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Figure 3.2 – Q-Q plots for Z6
N the studentized statistic associated with Uh6

N , with ρ = 0.5.
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Figure 3.3 – Q-Q plots for Z14
N the studentized statistic associated with Uh14

N , with ρ = 0.5.
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Figure 3.4 – Empirical coverage probabilities for the asymptotic confidence intervals at level
α = 0.95 of Uh6

N (left) and Uh14
N (right) for different values of N (x-axis), ρ ∈ {1/8,1/2}. Grey

dashed lines represent the confidence interval at level 0.95 of the frequency Z = X/K, if X
follows the binomial distribution with parameters K and α = 0.95.
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3.6.2. Graphon product distance

Model II(ϵ) We consider a Poisson-LBM. As this is a weighted graph model, π is a matrix
of weights rather than probabilities, i.e. (πkℓ)1≤k≤K,1≤ℓ≤L are real non-negative numbers. We
consider 2 row groups and 2 column groups of equal proportion. Let π0 be a weight matrix.
We set π0

11 = 4, π0
12 = π

0
21 = 2 and π0

22 = 1. The LBM with parameters α, β and π is also a
BEDD model. Indeed, its graphon has a product form and can be written w0(ξ, η) = λw̄0(ξ, η) =

λf0(ξ)g0(η) where λ = 9/4, f0 = g0 both take values 4/3 on [0,0.5], 2/3 on ]0.5,1].

Now, let τ be the 2×2 matrix where τ11 = τ22 = 2 and τ12 = τ21 = 0. For ϵ ≥ 0, we define Model
II(ϵ) as a LBM with group probabilities α and β and with weight matrix πϵ = λ

λ+ϵ(π
0 + ϵτ ).

Thus, Model II(0) is a LBM with product form (BEDD model) and for ϵ > 0, Model II(ϵ) with
graphon wϵ = λw̄ϵ is a perturbed version and rescaled to preserve the same density λ. As ϵ
grows, the graphon of Model II(ϵ) strays further from a BEDD model. Indeed, one can show
that d(w̄ϵ) = 64ϵ2(5 + 2ϵ)2/(9 + 4ϵ)4, which is an increasing function for ϵ ≥ 0.

Under Model II(ϵ), for each value N ∈ {2k/2 ∶ 10 ≤ k ≤ 22}, ρ ∈ {1/8,1/2}, ϵ ∈

{0.5,1,1.5,2,2.5,3}, we have simulated K = 500 networks of size mN × nN where mN = ⌊ρN⌋

and nN = N −mN . For each network, we have computed d̂N and V̂ d
N as estimates of d(w̄ϵ)

and V d respectively. The Q-Q plots of the studentized statistic Zd
N are given in Figures 3.5. It

is apparent that Zd
N is not centered, especially for N ≲ 512. This is due to the fact that d̂N

is obtained via the delta method, so it is a biased estimator of d(w̄ϵ) for finite values of N .
However, the bias converges to 0 when N grows, so we find that the statistic achieves normality
for N ≳ 2048. Figure 3.6 gives for different values of ϵ, the coverage probability for d(w̄ϵ) of

the interval [d̂N −Φ(1 − α
2 )
√

N
V̂ d

N

, d̂N +Φ(1 − α
2 )
√

N
V̂ d

N

] where Φ is the quantile function of the

standard normal distribution. We observe that convergence is fastest when ρ = 1/2 but also
when ϵ is larger, which seems to indicate that estimation of d(w̄) is more precise for square
matrices and when w is further away from a product model.
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Figure 3.5 – Q-Q plot for Zd
N the studentized statistic associated with d̂N , ϵ = 3, ρ = 0.5
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Figure 3.6 – Empirical coverage probabilities for the asymptotic confidence intervals at level
α = 0.95 of d̂N for different values of N (x-axis), ρ ∈ {1/8,1/2}, ϵ ∈ {1,2,3}. Grey dashed
lines represent the confidence interval at level 0.95 of the frequency Z = X/K, if X follows the
binomial distribution with parameters K and α = 0.95.

3.6.3. Heterogeneity in the row weights of a network

Model III In this example, we consider a weighted BEDD model with power-law strength
distributions, i.e. the marginals f and g have the form f(ξ) = (αf +1)ξαf and g(η) = (αg+1)ηαg ,
where αf and αg are real non-negative numbers. αf is directly related to F2 = ∫ f(ξ)

2dξ =

(αf + 1)2/(2αf + 1).

Under Model III, for each value N ∈ {2k/2 ∶ 10 ≤ k ≤ 22} and ρ ∈ {1/8,1/2,7/8},
we have simulated K = 500 networks of size mN × nN where mN = ⌊ρN⌋ and nN =

N − mN . We estimate F2 and G2 using F̂2,N and its symmetric counterpart Ĝ2,N . We
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also compute V̂ F2
N and V̂ G2

N to obtain the studentized statistics ZF2
N and ZG2

N . Q-Q
plots of ZF2

N are given in Figures 3.7. Figure 3.8 gives the respective coverage proba-

bilities for F2 and G2 of the intervals [F̂2,N −Φ(1 − α
2 )
√

N

V̂
F2

N

, F̂2,N +Φ(1 − α
2 )
√

N

V̂
F2

N

] and

[Ĝ2,N −Φ(1 − α
2 )
√

N

V̂
G2

N

, Ĝ2,N +Φ(1 − α
2 )
√

N

V̂
G2

N

] respectively, where Φ is the quantile function

of the standard normal distribution. Despite the bias due to the delta method, apparent for
N = 64 in Figure 3.7, we find that the coverage probabilities fall in the confidence intervals even
for small values of N . We would expect that for F2, the worst case correspond to ρ = 1/8 (there
are less rows) and that for G2, the worst case correspond to ρ = 7/8 (there are less columns),
but Figure 3.8 does not show a clear difference between the three values of ρ.
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Figure 3.7 – Q-Q plots for ZF2
N the studentized statistic associated with F̂2,N , ρ = 0.5
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Figure 3.8 – Empirical coverage probabilities for the asymptotic confidence intervals at level
α = 0.95 of ZF2

N (left) and ZG2
N (right) for different values of N (x-axis), ρ ∈ {1/8,1/2,7/8}. Grey

dashed lines represent the confidence interval at level 0.95 of the frequency Z = X/K, if X
follows the binomial distribution with parameters K and α = 0.95.
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3.7. Illustrations

To illustrate the use and interpretation of some of the U -statistics introduced in this pa-
per, we considered the set of law-makers networks compiled by Michalska-Smith and Allesina
(2019). The database contains networks arising from different fields (ecology, social sciences,
life sciences). We focused on the subset of so-called ’legislature’ networks both because of their
sizes and because network comparison is of interest for this dataset.

Data description. Four law-maker assemblies were considered: the European Parliament
(’EP’), the General Assembly of the United Nations (’UN’), the US House of Representatives
(’USH’) and the US Senate (’USS’). One network has been recorded each year for each parlia-
ment; we considered the 26 years from 1979 to 2004, for which the data are available for all the
four assemblies. The network recorded for a given assembly in a given year consists of the votes
(yes or no) of the different members (rows of the adjacency matrix) for the different proposed
laws (columns of the adjacency matrix).
Figure 3.9 gives the dimensions and densities of the 26 networks collected in each assembly: the
main difference is that the European Parliament is both larger (both in terms of members and
laws) and sparser than the three others.
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Figure 3.9 – Distribution of the number of members (left), number of laws (center) and density
(right) of the four lawmakers networks across the 26 years (in log-scale).

Degree imbalance. We then focused on the degree of imbalance among the rows (resp.
columns), which, under the weighted BEDD model defined in Equation (3.10), can be measured
by the U -statistic F2 (resp. G2). Figure 3.10 gives the evolution of each of the two indicators
along the years for each parliament. We observe that, for each of them, both F2 and G2 remain
above 1, all along the period: as expected no uniformity exist, neither among the members
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(F2 > 1), nor among the laws (G2 > 1). Regarding the US networks (USH and USS), the
imbalanced if more marked among the laws than between the members. As expected also,
the confidence intervals are narrower for the largest networks (EP). No systematic pattern is
observed, except the shift in the imbalance among resolutions voted at the General Assembly of
the United Nations (UN) that is observed in 1992 (and which happens to coincide with the UN
membership of former soviet republics).
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Figure 3.10 – Evolution of degree imbalance in each assembly along the years. Top: F2 U -
statistics, bottom: G2. From left to right: European Parliament, General Assembly of the
United Nations, US House of Representatives and US Senate. Solid line: U -statistic as an
estimate of F2 (resp. G2). Dotted line: 95%-confidence interval for F2 (resp. G2).

Network comparison. For each available year, we then compared the networks of the four
assemblies in terms of degree imbalance (F2 and G2) and frequency of topological motifs 6 (as
given in Figure 3.1). We chose this motif as it constitutes a clique, characterizing a group be-
havior, in which close members are in favor of the same laws. For each of these parameters, we
use the comparison test procedure described in Section 3.5.3.
Figure 3.11 display the results. We observe no significant difference between the two US as-
semblies, which are also the smallest ones: the absence of significant differences can therefore
result from a weak power of the tests when considering small networks. We also observe a higher
heterogeneity among the members of the European Parliament with respect to all other assem-
blies, as well as a higher heterogeneity among the member of the United Nations assembly, with
respect to the two US chambers. A different picture is obtained for the heterogeneity among
the laws, which is significantly higher in the UN assembly and significantly lower in the EP
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assembly.
The frequency of motif 6 is interesting, as it may reveal a specific socio-political behavior. To
this respect, the group structure turns out to be much stronger in the UN than in the EP, the
members of which represent both different political orientations and different nations.
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Figure 3.11 – Network comparison for the U -statistics of F2, G2 and for the count of the motif
6 (M6). EP-UN= —◻—, EP-USS= —◇—, EP-USH= —△—, UN-USS= - -◇- -, UN-USH=
- -△- -, USS-USH= ⋯△⋯. Horizontal lines = standard normal quantiles with level .025 and
.975.

Appendix 3.A Backward martingales

Here, we present the backward martingales and their convergence theorem, which is used to
prove the convergence of some estimators. The proof of Theorem 3.A.3 can be found in Doob
(1953), Section 7, Theorem 4.2. We recall beforehand the definition of a decreasing filtration.

Definition 3.A.1. A decreasing filtration is a decreasing sequence of σ-fields F = (Fn)n≥1, i.e.
such that for all n ≥ 1, Fn+1 ⊂ Fn.

Definition 3.A.2. Let F = (Fn)n≥1 be a decreasing filtration and M = (Mn)n≥1 a sequence of
integrable random variables adapted to F . (Mn,Fn)n≥1 is a backward martingale if and only if
for all n ≥ 1, E[Mn ∣ Fn+1] =Mn+1.

Theorem 3.A.3. Let (Mn,Fn)n≥1 be a backward martingale. Then, (Mn)n≥1 is uniformly
integrable, and, denoting M∞ = E[M1 ∣ F∞] where F∞ = ⋂∞n=1Fn, we have

Mn
a.s.,L1
ÐÐÐ→

n→∞
M∞.
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Appendix 3.B Proofs of the results presented in Section 3.2

Proof of Lemma 3.2.2. We prove this lemma by induction on (r, c) the sizes of i and j. For
(r, c) = (1,0) and (r, c) = (0,1), we have

E[p1,0h(Yi,∅) ∣ A∅,∅] = E[ψ1,0h(Yi,∅)] −E[h(Y(1,...,p;1,...,q))] = 0

and

E[p0,1h(Y∅,j) ∣ A∅,∅] = E[ψ0,1h(Y∅,i)] −E[h(Y(1,...,p;1,...,q))] = 0.

Suppose that the lemma is true for all (0,0) < (r′, c′) < (r, c). Let (i, j) ∈ Pr(N)×Pc(N), i ⊂ i
and j ⊂ j. Denote r = Card(i) and c = Card(j). We can write

E[pr,ch(Yi,j) ∣ Ai,j] = E[ψr,ch(Yi,j) ∣ Ai,j] −E[pr,ch(Yi,j) ∣ Ai,j]

− ∑
(0,0)<(r′,c′)<(r,c)

∑
i′∈Pr′(i),j′∈Pc′(j)
(i′,j′)≠(i,j)

E[pr′,c′h(Yi′,j′) ∣ Ai,j]

= ∑
(0,0)≤(r′,c′)<(r,c)

∑
i′∈Pr′(i),j′∈Pc′(j)

E[pr′,c′h(Yi′,j′) ∣ Ai,j]

− ∑
(0,0)<(r′,c′)<(r,c)

∑
i′∈Pr′(i),j′∈Pc′(j)
(i′,j′)≠(i,j)

E[pr′,c′h(Yi′,j′) ∣ Ai,j]

= − ∑
(0,0)<(r′,c′)<(r,c)

∑
i′∈Pr′(i),j′∈Pc′(j)

i′/⊂i,j′/⊂j

E[pr′,c′h(Yi′,j′) ∣ Ai′∩i,j′∩j].

where we have used the fact that the pr′,c′h(Yi′,j′) are measurable by their respective Ai′,j′ so
that E[pr′,c′h(Yi′,j′) ∣ Ai,j] = E[pr′,c′h(Yi′,j′) ∣ Ai′∩i,j′∩j].

Since the last sum excludes the case i′ = i and j′ = j, then the induction hypothesis ensures
that all the terms are equal to 0, so E[pr,ch(Yi,j) ∣ Ai,j] = 0, which concludes the proof by
induction.

Proof of Corollary 3.2.3. First, we see that for some (r1, c1) and (r2, c2),

Cov(P r1,c1
m,n h1(Y ), P

r2,c2
m,n h2(Y ))

= [(
m

r1
)(
m

r2
)(
n

c1
)(
n

c2
)]
−1

∑
i1∈Pr1(JmK)
j1∈Pc1(JnK)

∑
i2∈Pr2(JmK)
j2∈Pc2(JnK)

Cov(pr1,c1h1(Yi1,j1), p
r2,c2h2(Yi2,j2)).

If (r1, c1) ≠ (r2, c2), then from Proposition 3.2.1, all the covariance terms are equal to 0, so
Cov(P r1,c1

m,n h1(Y ), P
r2,c2
m,n h2(Y )) = 0 and that is the first part of the corollary.
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If (r1, c1) = (r2, c2) = (r, c), then from Proposition 3.2.1, the covariance terms

Cov(pr,ch1(Yi1,j1), p
r,ch2(Yi2,j2)) = 0

if (i1, j1) ≠ (i2, j2). Using this fact and the exchangeability of Y , we have

Cov(P r,c
m,nh1(Y ), P

r,c
m,nh2(Y ))

= [(
m

r
)(
n

c
)]
−2

∑
i1∈Pr(JmK)
j1∈Pc(JnK)

∑
i2∈Pr(JmK)
j2∈Pc(JnK)

Cov(pr1,c1h1(Yi1,j1), p
r2,c2h2(Yi2,j2))

= [(
m

r
)(
n

c
)]
−2

∑
i1∈Pr(JmK)
j1∈Pc(JnK)

Cov(pr1,c1h1(Yi1,j1), p
r2,c2h2(Yi1,j1))

= [(
m

r
)(
n

c
)]
−1

Cov(pr,ch1(YJrK,JcK), p
r,ch2(YJrK,JcK)),

which proves the second part of the corollary.

Appendix 3.C Proofs of the results presented in Section 3.3

Proof of Lemma 3.3.2. We only prove the first convergence result, since the second can be de-
duced by analogy.

By definition,
p1,0
({i},∅)h = ψ

1,0
({i},∅)h −E[h(Y(1,...,p;1,...,q))].

First, we see that the p1,0
({i},∅)h(Y ) only depends on ξi, so all the p1,0

({i},∅)h(Y ) are independent.
Because h is symmetric and Y is RCE, they are also identically distributed.

By the tower rule, we also have E[ψ1,0
({i},∅)h] = E[h(Y(1,...,p;1,...,q))] so E[p1,0

({i},∅)h] = 0.

Finally, we have, from the Aldous-Hoover representation theorem, then Cauchy-Schwarz’s
inequality, and the fact that E[h(Y(1,...,p;1,...,q))

2] <∞,

V[p1,0
({i},∅)h] = v

1,0
h

= V[E[h(Y(1,...,p;1,...,q)) ∣ ξi]]

= Cov(h(Y(1,...,p;1,...,q)), h(Y(1,p+1,...,2p−1;1,...,q)))

< V[h(Y(1,...,p;1,...,q))]

<∞.

The classical CLT gives the desired result.
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Proof of Lemma 3.3.3. For all i ∈ Pr(JmK) and j ∈ Pc(JnK) and (r, c) ∈ N2, we have E[ψr,c
(i,j)h] =

E[h(Y(1,...,p;1,...,q))].

By recursion, we have E[AN ] = E[P r,c
N h] = 0 for all (r, c) > (0,0) since

E[P r,c
N h] = E[pr,c

(i,j)h]

= E[ψr,c
(i,j)h] − ∑

(0,0)≤(r′,c′)<(r,c)
∑

i′∈Pr′(i)
j′∈Pc′(j)

E[pr′,c′

(i′,j′)h].

Now, Corollary 3.2.4 imply that Cov(P r,c
N h,P r′,c′

N h) = 0 unless (r, c) = (r′, c′). So

V[AN ] = N ∑
(0,0)<(r,c)≤(p,q)
(r,c)≠(1,0)≠(0,1)

∑
(0,0)<(r′,c′)≤(p,q)
(r′,c′)≠(1,0)≠(0,1)

(
p

r
)(
p

r′
)(
q

c
)(
q

c′
)Cov(P r,c

N h,P r′,c′

N h)

= N ∑
(0,0)<(r,c)≤(p,q)
(r,c)≠(1,0)≠(0,1)

(
p

r
)

2
(
q

c
)

2
V[P r,c

N h]

= N ∑
(0,0)<(r,c)≤(p,q)
(r,c)≠(1,0)≠(0,1)

(
p

r
)

2
(
q

c
)

2
(
mN

r
)
−1
(
nN

c
)
−1
V[pr,c

(JrK,JcK)h].

(3.18)

From equation 3.5, we see that h(Y(1,...p,1,...,q)) is a linear combination of all the
(pr,c
(i,j)h) 0≤r≤p,0≤c≤q

i∈Pr(JpK),j∈Pc(JqK)
. So E[h(Y(1,...,p;1,...,q))

2] < ∞ ensures that V[pr,c
(JrK,JcK)h] < ∞. There-

fore V[AN ] = O(Nm
−r
N n−c

N ) = O(N
1−r−c).

Thus, we deduce from Markov’s inequality that AN
P

ÐÐÐ→
N→∞

0.

Lemma 3.C.1. 1. U h̃
N = U

h
N ,

2. E[h̃(Y(1,...,p′;1,...,q′))] = E[h(Y(1,...,p;1,...,q))],

3. E[h̃(Y(1,...,p′;1,...,q′))
2] ≤ E[h(Y(1,...,p;1,...,q))

2].

Proof of Lemma 3.C.1. The two first properties are straightforward. The third property stems
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from

E[h̃(Y(1,...,p′;1,...,q′))
2
] = [(

p′

p
)(
q′

q
)]

−2

∑
i1⊂{i1,...,ip′}
j1⊂{j1,...,jq′}

∑
i2⊂{i1,...,ip′}
j2⊂{j1,...,jq′}

E[h(Yi1,j1)h(Yi2,j2)]

= [(
p′

p
)(
q′

q
)]

−2

∑
i1⊂{i1,...,ip′}
j1⊂{j1,...,jq′}

∑
i2⊂{i1,...,ip′}
j2⊂{j1,...,jq′}

(E[h(Y(1,...,p;1,...,q))
2
]

−
1
2
E[(h(Yi1,j1) − h(Yi2,j2))

2
])

≤ [(
p′

p
)(
q′

q
)]

−2

∑
i1⊂{i1,...,ip′}
j1⊂{j1,...,jq′}

∑
i2⊂{i1,...,ip′}
j2⊂{j1,...,jq′}

E[h(Y(1,...,p;1,...,q))
2
]

≤ E[h(Y(1,...,p;1,...,q))
2
].

Proof of Corollary 3.3.5. First, we show that limN→+∞NCov(Uhk
N , Uhℓ

N )

Let (Zhk)1≤k≤D be a vector of random variables following a centered multivariate Gaussian
distribution with covariance matrix Σh1,...,hD defined in the theorem. Then Zhk ∼ N (0, V hk) for
all 1 ≤ k ≤D and Cov(Zhk , Zhℓ) = Chk,hℓ for all 1 ≤ k ≤D and 1 ≤ ℓ ≤D.

Denote p′ ∶= maxk(pk) and q′ ∶= maxk(qk). For some t = (t1, t2, ..., tn) ∈ Rn, we set h̃t ∶=

t1h̃1 + t2h̃2 + ... + tnh̃D. h̃t is a kernel function of size p′ × q′.

First, assume that t ≠ (0, ...,0). Then by hypothesis, h̃t /≡ 0, therefore Proposition 3.C.1
implies that ∑D

k=1 tkU
hk
N = ∑

D
k=1 tkU

h̃k
N = U h̃t

N , the U -statistic with quadruplet kernel h̃t (of
size p′ × q′). Using Cauchy-Schwarz inequality and the fact that from Proposition 3.C.1,
E[h̃k(Y(1,...,p′;1,...,q′))

2] ≤ E[hk(Y(1,...,p;1,...,q))
2] <∞ for all 1 ≤ k ≤D, we have furthermore

E[h̃t(Y(1,...,p′;1,...,q′))
2
] =

n

∑
k=1

t2kE[h̃k(Y(1,...,p′;1,...,q′))
2
]

+ 2 ∑
1≤k≠ℓ≤D

tktℓE[h̃k(Y(1,...,p′;1,...,q′))h̃ℓ(Y(1,...,p′;1,...,q′))],

≤
n

∑
k=1

t2kE[h̃k(Y(1,...,p′;1,...,q′))
2
]

+ 2 ∑
1≤k≠ℓ≤D

tktℓ

√

E[h̃k(Y(1,...,p′;1,...,q′))2]E[h̃ℓ(Y(1,...,p′;1,...,q′))2],

< ∞.

Therefore, Theorem 3.3.1 also applies for U h̃t
N and

√
N(U h̃t

N −U
h̃t
∞ )

D
ÐÐÐ→
N→∞

N (0, V h̃t), where :

● U h̃t
∞ = ∑

D
k=1 tkU

hk∞ ,
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● V h̃t = tT Σh1,...,hD t.
The second point comes from the fact that V h̃t = limN→+∞N ∑

D
k=1∑

D
ℓ=1 tktℓCov(Uhk

N , Uhℓ
N ) and

by Corollary 3.2.4, limN→+∞NCov(Uhk
N , Uhℓ

N ) =
p2

c c
1,0
hk,hℓ

+
q2

1−cc
0,1
hk,hℓ

= Σh1,...,hD

kℓ . Therefore, we

can conclude that
√
N ∑D

k=1 tk(U
hk
N −U

hk∞ ) =
√
N(U h̃t

N −U
h̃t
∞ )

D
ÐÐÐ→
N→∞

∑
D
k=1 tkZ

hk .

Now assume that t = (0, ...,0). Then h̃t ≡ 0 so U h̃t
N = 0 = ∑D

k=1 tkZ
hk . Therefore,

√
N ∑D

k=1 tk(U
hk
N −U

hk∞ ) =
√
N(U h̃t

N −U
h̃t
∞ )

D
ÐÐÐ→
N→∞

∑
D
k=1 tkZ

hk is still true.

We have proven that
√
N ∑D

k=1 tk(U
hk
N − U

hk∞ )
D
ÐÐÐ→
N→∞

∑
D
k=1 tkZ

hk for all t ∈ Rn, so we can
finally apply the Cramér-Wold theorem (Theorem 29.4 of Billingsley, 1995) which states that
√
N (Uhk

N −U
hk∞ )1≤k≤D

converges jointy in distribution to (Zhk)1≤k≤D, which is a centered mul-
tivariate Gaussian with covariance matrix Σh1,...,hD .

Appendix 3.D Proofs of the results presented in Section 3.4

Lemma 3.D.1. Let k ∈ N. Then as n→∞,

(
n

k
) =

nk

k!
+O(nk−1

)

Proof of Lemma 3.4.1. The sum T p,q
N (IK , JK) defined by equation (3.6) is a sum over TN ex-

pectation terms where

TN ∶= Card(T p,q
N,(IK ,JK)) =

K

∏
k=1

Card(Sp,q
N,(ik,j

k
)) =

K

∏
k=1
(
mN − pk

p − p
k

)(
nN − qk

q − q
k

). (3.19)

These expectation terms E[Xi1,j1 ...XiK ,jK
] only depend on the number of times elements appear

in pairwise intersections between the (ik, jk), 1 ≤ k ≤ K. In particular, E[Xi1,j1 ...XiK ,jK
] =

α(IK , JK) when all the ik contains the elements of ik and all the other elements do not appear
in any other ik′ (see equation 3.7). Denote AN the number of terms of T p,q

N (IK , JK) where
E[Xi1,j1 ...XiK ,jK

] = α(IK , JK), then

T p,q
N (IK , JK) =

AN

TN
α(IK , JK) +

1
TN

∑
T p,q

N,(IK ,JK)

E[Xi1,j1 ...XiK ,jK
]≠α(IK ,JK)

E[Xi1,j1Xi2,j2 ...XiK ,jK
]. (3.20)

Using Jensen’s inequality, Hölder’s inequality and the exchangeability of the submatrices,
we have for all the expectation terms,

0 ≤ ∣E[Xi1,j1 ...XiK ,jK
]∣ ≤ E[∣Xi1,j1 ...XiK ,jK

∣] ≤
K

∏
k=1

E[∣Xik,jk
∣
K
]

1
K = E[∣X(1,...,p;1,...,q)∣

K
].



H
oe

ffd
in

g
de

co
m

po
si

ti
on

3.D. Proofs of the results presented in Section 3.4 163

In particular, this holds for all (TN −AN) terms of the remaining sum in Equation (3.20) when
E[Xi1,j1 ...XiK ,jK

] ≠ α(IK , JK), so

0 ≤ ∣T p,q
N (IK , JK) −

AN

TN
α(IK , JK)∣ ≤ (1 −

AN

TN
)E[∣X(1,...,p;1,...,q)∣

K
]. (3.21)

We need to calculate TN and AN to use this inequality and conclude the proof. We organize
the rest of the proof in 3 parts.

1. We find an expression for TN . Since for all 1 ≤ k ≤K, from Lemma 3.D.1,

(
mN − pk

p − p
k

)(
nN − qk

q − q
k

) =
m

p−p
k

N n
q−q

k
N

(p − p
k
)!(q − q

k
)!
(1 +O (m−1

N + n
−1
N )) ,

we have from Equation (3.19)

TN = (
K

∏
k=1
(p − p

k
)!(q − q

k
)!)
−1

m
Kp−P
N n

Kq−Q

N (1 +O (m−1
N + n

−1
N )) . (3.22)

2. We find an expression for AN . The summation over (ik, jk) ∈ S
p,q
N,(ik,j

k
) is in fact a sum

over the p − p
k

elements of ik and q − q
k

elements of jk that are not restricted by ik and
j
k
.
● We can pick the first i1 choosing the p − p1 unrestricted indices among the mN − p̄

values of {1, ...,mN} excluding ∪K
k=1ik. The same follows for the pick of j1, so there

are (mN−p̄
p−p1
)(

nN−q̄
q−q1
) possible picks for (i1, j1).

● The pick of i2 consists in choosing the p− p2 unrestricted indices among the mN − p̄−

(p − p1) values of {1, ...,mN} excluding ∪K
k=1ik and the elements already taken by i1.

We deduce that there are (mN−p̄−(p−p1)
p−p2

)(
nN−q̄−(q−q1)

q−q2
) possible picks for (i2, j2).

● Iteratively, for all 1 ≤ k ≤K, we find that there are (mN−p̄−∑k−1
k′=1(p−p

k′
)

p−p
k

)(
nN−q̄−∑k−1

k′=1(q−q
k′
)

q−q
k

)

possible picks for (ik, jk).
We deduce that the number of possible picks for all the (ik, jk), 1 ≤ k ≤ K so that
E[Xi1,j1 ...XiK ,jK

] = α(IK , JK) is

AN =
K

∏
k=1
(
mN − p̄ −∑

k−1
k′=1(p − pk′

)

p − p
k

)(
nN − q̄ −∑

k−1
k′=1(q − qk′

)

q − q
k

).

But we see that from Lemma 3.D.1, for 1 ≤ k ≤K,

(
mN − p̄ −∑

k−1
k′=1(p − pk′

)

p − p
k

)(
nN − q̄ −∑

k−1
k′=1(q − qk′

)

q − q
k

) =
m

p−p
k

N n
q−q

k
N

(p − p
k
)!(q − q

k
)!
(1 +O (m−1

N + n
−1
N )) .

So we have

AN = (
K

∏
k=1
(p − p

k
)!(q − q

k
)!)
−1

m
Kp−P
N n

Kq−Q

N (1 +O (m−1
N + n

−1
N )) .
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3. Now with the expressions of TN and AN , we can deduce that

TN −AN = O (m
Kp−P
N n

Kq−Q

N (m−1
N + n

−1
N )) ,

so

1 − AN

TN
=

O (m
Kp−P
N n

Kq−Q

N (m−1
N + n

−1
N ))

(∏
K
k=1(p − pk

)!(q − q
k
)!)
−1
m

Kp−P
N n

Kq−Q

N (1 +O (m−1
N + n

−1
N ))

= O (m−1
N + n

−1
N ) .

Therefore, we can finally conclude using Equation (3.21),

T p,q
N (IK , JK) = (1 +O (m−1

N + n
−1
N ))α(IK , JK) +O (m

−1
N + n

−1
N )

= α(IK , JK) +O (m
−1
N + n

−1
N ) .

Proof of Proposition 3.4.5. In this proof, for the estimator defined by equation (3.8), we write
µ̂
(i)
N instead of µ̂h,(i)

N to simplify the notation without ambiguity.

Notice that

E[v̂h;1,0
N ] =

1
2
E[(µ̂(1)N − µ̂

(2)
N )

2
]

= E[(µ̂(1)N )
2
] −E[µ̂(1)N µ̂

(2)
N ].

(3.23)

● First, we calculate E[(µ̂(1)N )
2] :

E[µ̂(1)N (Y )
2
] = (

mN − 1
p − 1

)
−2
(
nN

q
)
−2

∑
(i1,j1)∈Sp,q

N,({1},∅)

∑
(i2,j2)∈Sp,q

N,({1},∅)

E[h(Yi1,j1)h(Yi2,j2)]

= T p,q
N (I2, J2)

where I2 = ({1},{1}) and J2 = (∅,∅). Applying Lemma 3.4.1, with P = Card({1}) +
Card({1}) = 2, Q = Card(∅) +Card(∅) = 0 and

α(I2, J2) = E[h(Y(1,...,p;1,...,q))h(Y(1,p+1,...,2p−1;q+1,...,2q))]

= E[E[h(Y(1,...,p;1,...,q))h(Y(1,p+1,...,2p−1;q+1,...,2q)) ∣ ξ1]]

= E[E[h(Y(1,...,p;1,...,q)) ∣ ξ1]
2
]

= E[ψ1,0
({1},∅)h

2
].

we find

E[(µ̂(1)N )
2
] = E[ψ1,0

({1},∅)h
2
] +O (N−1) . (3.24)
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● Next, we calculate E[µ̂(1)N µ̂
(2)
N ] :

E[µ̂(1)N µ̂
(2)
N ] = (

mN − 1
p − 1

)
−2
(
nN

q
)
−2

∑
(i1,j1)∈Sp,q

N,({1},∅)

∑
(i2,j2)∈Sp,q

N,({2},∅)

E[h(Yi1,j1)h(Yi2,j2)]

= T p,q
N (I

′
2, J

′
2)

where I ′2 = ({1},{2}) and J ′2 = (∅,∅). Applying Lemma 3.4.1 with

α(I ′2, J
′
2) = E[h(Y(1,3,...,p+1;1,...,q))h(Y(2,p+2,...,2p;q+1,...,2q))]

= E[h(Y(1,...,p;1,...,q))]
2

= E[ψ1,0
({1},∅)h]

2,

we find

E[µ̂(1)N µ̂
(2)
N ] = E[ψ

1,0
({1},∅)h]

2
+O (N−1) . (3.25)

Finally, we can combine Equations (3.23), (3.24) and (3.25) to obtain

E[v̂h;1,0
N ] = E[ψ1,0

({1},∅)h
2
] −E[ψ1,0

({1},∅)h]
2
+O (N−1) = v1,0

h +O (N
−1) ,

which proves the theorem.

Proof of Proposition 3.4.6. In this proof, we write µ̂(i)N instead of µ̂h,(i)
N to simplify the notation

without ambiguity.

Notice that

E[(v̂h;1,0
N )

2
] = (

mN

2
)
−2

∑
1≤i1<i2≤mN

∑
1≤i′1<i′2≤mN

E
⎡
⎢
⎢
⎢
⎢
⎣

(µ̂
(i1)
N − µ̂

(i2)
N )2(µ̂

(i′1)
N − µ̂

(i′2)
N )2

4

⎤
⎥
⎥
⎥
⎥
⎦

= (
mN

2
)
−1

∑
1≤i1<i2≤mN

1
4
E[(µ̂(1)N − µ̂

(2)
N )

2
(µ̂
(3)
N − µ̂

(4)
N )

2
] +O (N−1)

= E[(µ̂(1)N )
2
(µ̂
(2)
N )

2
] − 2E[(µ̂(1)N )

2µ̂
(2)
N µ̂

(3)
N ] +E[µ̂

(1)
N µ̂

(2)
N µ̂

(3)
N µ̂

(4)
N ]

+O (N−1) .

(3.26)

Now, we calculate each of the three expectation terms in this equation.

● First, we calculate E[(µ̂(1)N )
2(µ̂

(2)
N )

2] :

E[(µ̂(1)N )
2
(µ̂
(2)
N )

2
]

= (
mN − 1
p − 1

)
−4
(
nN

q
)
−4

∑
(i1,j1)∈Sp,q

N,({1},∅)

∑
(i2,j2)∈Sp,q

N,({1},∅)

∑
(i3,j3)∈Sp,q

N,({2},∅)

∑
(i4,j4)∈Sp,q

N,({2},∅)

E[h(Yi1,j1)h(Yi2,j2)h(Yi3,j3)h(Yi4,j4)]

= T p,q
N (I4, J4)
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where I4 = ({1},{1},{2},{2}) and J4 = (∅,∅,∅,∅). Applying Lemma 3.4.1 with

α(I4, J4) = E[h(Y(1,3,...,p+1;1,...,q))h(Y(1,p+2,...,2p;q+1,...,2q))

× h(Y(2,2p+1,...,3p−1;2q+1,...,3q))h(Y(2,3p,...,4p−2;3q+1,...,4q))]

= E[h(Y(1,...,p;1,...,q))h(Y(1,p+1,...,2p−1;q+1,...,2q))]
2

= E[E[h(Y(1,...,p;1,...,q))h(Y(1,p+1,...,2p−1;q+1,...,2q)) ∣ ξ1]]
2

= E[E[h(Y(1,...,p;1,...,q)) ∣ ξ1]
2
]
2

= E[ψ1,0
({1},∅)h

2
]
2.

we find

E[(µ̂(1)N )
2
(µ̂
(2)
N )

2
] = E[ψ1,0

({1},∅)h
2
]
2
+O (N−1) . (3.27)

● Next, we calculate E[(µ̂(1)N )
2µ̂
(2)
N µ̂

(3)
N ] :

E[(µ̂(1)N )
2µ̂
(2)
N µ̂

(3)
N ]

= (
mN − 1
p − 1

)
−4
(
nN

q
)
−4

∑
(i1,j1)∈Sp,q

N,({1},∅)

∑
(i2,j2)∈Sp,q

N,({1},∅)

∑
(i3,j3)∈Sp,q

N,({2},∅)

∑
(i4,j4)∈Sp,q

N,({3},∅)

E[h(Yi1,j1)h(Yi2,j2)h(Yi3,j3)h(Yi4,j4)]

= T p,q
N (I

′
4, J

′
4)

where I ′4 = ({1},{1},{2},{3}) and J ′4 = (∅,∅,∅,∅). Applying Lemma 3.4.1 with

α(I ′4, J
′
4) = E[h(Y(1,4,...,p+2;1,...,q))h(Y(1,p+3,...,2p+1;q+1,...,2q))

× h(Y(2,2p+2,...,3p;2q+1,...,3q))h(Y(3,3p+1,...,4p−1;3q+1,...,4q))]

= E[h(Y(1,...,p;1,...,q))h(Y(1,p+1,...,2p−1;q+1,...,2q))]
2E[h(Y(1,...,p;1,...,q))]

2

= E[E[h(Y(1,...,p;1,...,q))h(Y(1,p+1,...,2p−1;q+1,...,2q)) ∣ ξ1]]E[ψ1,0
({1},∅)h(Y )]

2

= E[E[h(Y(1,...,p;1,...,q)) ∣ ξ1]
2
]E[ψ1,0

({1},∅)h]
2

= E[ψ1,0
({1},∅)h(Y )

2
]E[ψ1,0

({1},∅)h]
2.

we find

E[(µ̂(1)N (Y ))
2µ̂
(2)
N (Y )µ̂

(3)
N (Y )] = E[ψ

1,0
({1},∅)h(Y )

2
]E[ψ1,0

({1},∅)h(Y )]
2
+O (N−1) . (3.28)

● Now, we calculate E[µ̂(1)N (Y )µ̂
(2)
N (Y )µ̂

(3)
N (Y )µ̂

(4)
N (Y )] :

E[µ̂(1)N (Y )µ̂
(2)
N (Y )µ̂

(3)
N (Y )µ̂

(4)
N (Y )]

= (
mN − 1
p − 1

)
−4
(
nN

q
)
−4

∑
(i1,j1)∈Sp,q

N,({1},∅)

∑
(i2,j2)∈Sp,q

N,({2},∅)

∑
(i3,j3)∈Sp,q

N,({3},∅)

∑
(i4,j4)∈Sp,q

N,({4},∅)

E[h(Yi1,j1)h(Yi2,j2)h(Yi3,j3)h(Yi4,j4)]

= T p,q
N (I

′′
4 , J

′′
4 )
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where I ′4 = ({1},{2},{3},{4}) and J ′4 = (∅,∅,∅,∅). Applying Lemma 3.4.1 with

α(I ′′4 , J
′′
4 ) = E[h(Y(1,5,...,p+3;1,...,q))h(Y(2,p+4,...,2p+2;q+1,...,2q))

× h(Y(3,2p+3,...,3p+1;2q+1,...,3q))h(Y(4,3p+2,...,4p;3q+1,...,4q))]

= E[h(Y(1,...,p;1,...,q))]
4

= E[ψ1,0
({1},∅)h(Y )]

4.

we find

E[µ̂(1)N (Y )µ̂
(2)
N (Y )µ̂

(3)
N (Y )µ̂

(4)
N (Y )] = E[ψ

1,0
({1},∅)h(Y )]

4
+O (N−1) . (3.29)

Finally, injecting the calculated expressions (3.27), (3.28) and (3.29) in (3.26), we obtain

E[(v̂h;1,0
N )

2
] = E[ψ1,0

({1},∅)h(Y )
2
]
2
− 2E[ψ1,0

({1},∅)h(Y )
2
]E[ψ1,0

({1},∅)h(Y )]
2

+E[ψ1,0
({1},∅)h(Y )]

4
+O (N−1)

= V[ψ1,0
({1},∅)h(Y )

2
]
2
+O (N−1)

= (v1,0
h )

2
+O (N−1)

= E[v̂h;1,0
N ]

2
+O (N−1)

where we have applied Proposition 3.4.5 in the last step. This proves that V[v̂h;1,0
N ] = O (N−1),

concluding the proof.

Appendix 3.E Proofs of the results presented in Section 3.5

Lemma 3.E.1. Let Y be a matrix sampled from a Poisson W -graph model. Let w̄, f and g be
defined as in Section 3.5.2. For the kernel functions defined in Table 3.1, we have

● E[hA,1(Y(i1,i2;j1,j2))] = λ
3
∬ w̄(ξ, η)2dξdη,

● E[hA,2(Y(i1,i2;j1,j2))] = λ
3
∬ w̄(ξ, η)f(ξ)g(η)dξdη,

● E[hB(Y(i1;j1,j2))] = λ
2
∫ f(ξ)

2dξ,
● E[hC(Y(i1,i2;j1))] = λ

2
∫ g(η)

2dη,
● E[hD(Y(i1;j1))] = λ.

Proof. The result for hD is straightforward. For the other kernel functions :

E[hA,1(Y(i1,i2;j1,j2))] = E[E[Yi1j1(Yi1j1 − 1)Yi2j2 ∣ ξ,η]]

= E[E[Yi1j1(Yi1j1 − 1) ∣ ξ,η]E[Yi2j2 ∣ ξ,η]]

= E[λ2w̄(ξi1 , ηj1)
2
× λ]

= λ3
∬ w̄(ξ, η)2dξdη.
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E[hA,2(Y(i1,i2;j1,j2))] = E[E[Yi1j1Yi1j2Yi2j2 ∣ ξ,η]]

= E[E[Yi1j1 ∣ ξ,η]E[Yi1j2 ∣ ξ,η]E[Yi2j2 ∣ ξ,η]]

= E[λw̄(ξi1 , ηj1) × λw̄(ξi1 , ηj2) × λw̄(ξi2 , ηj2)]

= λ3
∬ [w̄(ξi1 , ηj2) (∫ w̄(ξi1 , ηj1)dηj1)(∫ w̄(ξi2 , ηj2)dξi2)]dξi1dηj2

= λ3
∬ w̄(ξ, η)f(ξ)g(η)dξdη.

E[hB(Y(i1;j1,j2))] = E[E[Yi1j1Yi1j2 ∣ ξ,η]]

= E[E[Yi1j1 ∣ ξ,η]E[Yi1j2 ∣ ξ,η]]

= E[λw̄(ξi1 , ηj1) × λw̄(ξi1 , ηj2)]

= λ2
∫ [(∫ w̄(ξi1 , ηj1)dηj1)(∫ w̄(ξi1 , ηj2)dηj2)]dξi1

= λ2
∫ f(ξ)2dξ.

E[hC(Y(i1,i2;j1))] = E[E[Yi1j1Yi2j1 ∣ ξ,η]]

= E[E[Yi1j1 ∣ ξ,η]E[Yi2j1 ∣ ξ,η]]

= E[λw̄(ξi1 , ηj1) × λw̄(ξi2 , ηj1)]

= λ2
∫ [(∫ w̄(ξi1 , ηj1)dξi1)(∫ w̄(ξi2 , ηj1)dξi2)]dηj1

= λ2
∫ g(η)2dη.

Lemma 3.E.2. Let Y be a matrix sampled from a W -graph model. Let h1 and h2 be the kernel
functions defined as in Section 3.5.2. We have

● E[h1(Y(i1;j1,j2))] = λ
2
∫ f(ξ)

2dξ = λ2F2,
● E[h2(Y(i1,i2;j1,j2))] = λ

2.

Proof. The proof for h1 is identical to that for hB in the proof of Lemma 3.E.1. For h2,

E[h2(Y(i1,i2;j1,j2))] = E[E[Yi1j1Yi2j2 ∣ ξ,η]]

= E[E[Yi1j1 ∣ ξ,η]E[Yi2j2 ∣ ξ,η]]

= E[λ × λ]

= λ2.



H
oe

ffd
in

g
de

co
m

po
si

ti
on



D
egeneracy



D
eg

en
er

ac
y

Chapter4
Asymptotic distribution of

degenerate U-statistics on bipartite
networks

This chapter corresponds to a work in progress, aimed to be submitted later.
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Introduction

Degenerate U -statistics have a completely different asymptotic behavior from that of non-
degenerate ones. To explain when degeneracy arises, we recall the weak convergence result for
U -statistics of row-column exchangeable (RCE) matrices found in the previous chapters. It is
of the form

√
N(UN − U∞)

D
ÐÐÐ→
N→∞

N (0, V ). However, when V = 0, we notice that the limit
distribution becomes trivial. In this case, such a result is not much informative and cannot be
exploited to perform statistical inference.

The previous chapters have proposed a complete method to investigate non-degenerate U -
statistics. In the examples, we have always assumed that the U -statistics are not degenerate.
Yet, many U -statistics of interest are degenerate. The first objective of this chapter is to derive
weak convergence results for degenerate U -statistics, similar to those valid in the non-degenerate
case.

However, even if we obtain such limit theorems, the degeneracy of a U -statistic is not always
known a priori. In this case, we would not know which results to apply. Calculations are needed
to identify whether a U -statistic is degenerate or not. If it is degenerate, the order of degeneracy
has also to be found, which is even more tedious. The second objective of this chapter is to
explore ways and alternatives to identify degenerate U -statistics and their order of degeneracy.

Before that, we start with an example of degenerate U -statistic, to give some context. We
will see that degenerate U -statistics have a faster rate of convergence than non-degenerate U -
statistics, which is actually desirable. A possible approach to tackle degenerate U -statistics is
the use of so-called incomplete U -statistics, but we will see that they lose their advantage when
tackling the rate of convergence.
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4.1. A curse or a blessing?

U -statistics of RCE matrices can be degenerate when their kernel h of size p × q is centered
E[h(YJpK,JqK)] = 0. Actually, it is common to see centered kernels, especially when the U -statistic
is used as a test statistic. The degeneracy leads to a faster rate of convergence, which means
more powerful tests. Let us start with an example to understand how.

4.1.1. An example

Let (L(µ))µ≥0 be a family of probability distributions and Y ∼ L − BEDD(Θ), where Θ =
(λ, f, g) are BEDD parameters as defined in Chapter 2. We remind that the BEDD model is
defined by

ξi
i.i.d.
∼ U[0,1], ∀i ≥ 1,

ηj
i.i.d.
∼ U[0,1], ∀j ≥ 1,

Yij ∣ ξi, ηj ∼ L(λf(ξi)g(ηj)), ∀i ≥ 1, j ≥ 1.

The L − BEDD has been shown to be fully characterized by λ, (Fk)k≥1 and (Gk)k≥1. In
two previous examples in Chapters 2 and 3, we have estimated F2, which is interesting as it
quantifies the heterogeneity of the row degrees. Another question of interest is to test if the row
degrees are homogeneous, which means f ≡ 1. Let us define the null hypothesis H0 ∶ f ≡ 1 and
confront it to H1 ∶ f /≡ 1.

Under H0, we have F2 = 1 and otherwise F2 > 1. We can use the same U -statistic kernels as
in the previous chapters, defined by

h1(Y{i1,i2},{j1,j2}) =
1
2
(Yi1j1Yi1j2 + Yi2j1Yi2j2),

and

h2(Y{i1,i2},{j1,j2}) =
1
2
(Yi1j1Yi2j2 + Yi2j1Yi1j2).

For the Poisson-BEDD model, these kernels have expectations E[h1(Y{i1,i2},{j1,j2})] = λ
2F2 and

E[h2(Y{i1,i2},{j1,j2})] = λ
2.

We can consider our usual asymptotic framework with growing mN → ∞, nN → ∞ and
mN/N → ρ ∈]0,1[. UN ∶= UmN ,nN

is the U -statistic with kernel h = h1 − h2. We have E[UN ] =

λ2(F2 − 1) and under H0, it becomes E[UN ] = 0.
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However, we can show that this U -statistic is degenerate under H0. Indeed, we have both

E[h(Y{1,2},{1,2}) ∣ ξ1] =
1
2
E[Y11Y12 + Y21Y22 − Y11Y22 − Y21Y12 ∣ ξ1]

=
λ2

2
(f(ξ1)

2
+ F2 − 2f(ξ1)),

(4.1)

and

E[h(Y{1,2},{1,2}) ∣ η1] =
1
2
E[Y11Y12 + Y21Y22 − Y11Y22 − Y21Y12 ∣ η1]

=
λ2

2
(2F2 − 2)g(η1).

(4.2)

Under H0, these two conditional expectations are equal to 0. Therefore, the asymptotic variance
of the previous limit theorems is

V =
4
ρ
V[E[h(Y{1,2},{1,2}) ∣ ξ1]] +

4
1 − ρ

V[E[h(Y{1,2},{1,2}) ∣ η1]] = 0.

Thus, these limit theorems are only little informative about the limit distribution of UN .

Nevertheless, remember that degenerate U -statistics of i.i.d. observations have a faster rate
of convergence than non-degenerate U -statistics, due to their variance decreasing faster. If we
manage to identify their limit distributions, degenerate U -statistics of row-column exchangeable
matrices will also have a much faster rate of convergence than their non-degenerate counterpart.

Figure 4.1 shows the variation of logV[UN ] as a function of logN for simulated networks
following a BEDD model with f ≡ 1. If UN is non-degenerate, then V[UN ] = V /N + o(N

−1)

so the slope of the curve should converge to −1 as logN increases. Here, we observe that
the slope is closer to −3, which seems to indicate degeneracy and some relation of the form
V[UN ] = V3/N

3+o(N−3), where V3 is a constant. The example of this section will be investigated
in more detail in Section 4.5.
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Figure 4.1 – The decreasing empirical variance of UN . For each value of N ∈ {2k/2 ∶ 6 ≤ k ≤ 20},
we have simulated 500 networks of size ⌊N/2⌋ × ⌊N/2⌋, following a Poisson-BEDD model with
λ = 1, f ≡ 1 and a power-law form for g, i.e. g(η) = (αg + 1)ηαg , and αg chosen such that G2 = 2.
The plot shows the logarithm of the empirical variance log V̂[UN ] as a function of logN .

4.1.2. Incomplete U-statistics

One common approach to tackling the issue of degeneracy in the i.i.d. case is the use of
incomplete U -statistics. Consider (X1,X2, ...) i.i.d. variables and the kernel function h of k
variables. The U -statistic associated to h is

Un = (
n

k
)
−1

∑
i∈Pk(JnK)

h(Xi).

An incomplete U -statistic is defined by

UDn =
1
δn
∑

i∈Dn

h(Xi),

where D = (Dn)n≥1 is such that for all n ≥ 1, Dn ∈ Pk(JnK) and δn = ∣Dn∣. D is called the
design of the incomplete U -statistic. Because incomplete U -statistics average a smaller number
of terms than "complete" U -statistics, their variance is greater. Indeed, we have 0 ≤ V[UDn −Un] =

V[UDn ] − 2Cov(UDn , Un) +V[Un] = V[UDn ] −V[Un].

More especially, denote f
(c)
n the number of pairs of sets in Dn that have c elements in

common. A simple calculation can show that the variance of UDn is

V[UDn ] = δ
−2
n

k

∑
c=1
f (c)n vc,

where v = Cov(Xi,Xi′) where i and i′ have c elements in common.



D
egeneracy

176 Chapter 4. Asymptotic distribution of degenerate U -statistics on bipartite networks

Incomplete U -statistics have two main uses. First, the computation of the complete U -
statistic requires to average (nk) = O(n

k) terms. This becomes costly when n or k are large. By
symmetry, one hopes that omitting terms only affects the variance to an acceptable degree. The
second use of incomplete U -statistics is that if the design is chosen properly, it can partially
solve the problem of degeneracy. Indeed, the following theorem is a slightly reworked version
by Lee (1990) of a result by Brown and Kildea (1978). It ensures that, under conditions on
the design, incomplete U -statistics always converge to a Gaussian distribution, no matter the
degeneracy of the kernel.

Theorem 4.1.1. Let D be a design such that δn/n → 0 and for all 1 ≤ c ≤ k, we have f (c)n /δ
2
n =

O(n−1). Then
√
δn(U

D
n −U∞)

D
ÐÐÐ→
n→∞

N (0, vk).

The use of incomplete U -statistics can force the limit distribution to be Gaussian, but it
comes to the cost of a way slower rate of convergence. Indeed, we have δn ≤ n whereas, for
degenerate U -statistic, we would have hoped to have the convergence of nd/2(Un − U∞) where
d − 1 is the order of degeneracy.

In conclusion, because of the rate of convergence of degenerate U -statistics, degeneracy would
be a desirable property for U -statistics, but only when the form of the limit distribution can be
identified. The use of incomplete U -statistics would certainly be possible for our U -statistics. We
have not tried to transpose their convergence theorem to U -statistics of row-column exchangeable
matrices. However, it is expected that their use cancels the faster rate of convergence. In the
next section, we will see that it is possible to identify the distribution of degenerate U -statistics,
without reducing their rate of convergence.

4.2. Another orthogonal decomposition for U-statistics

In order to do this, we need to define a new system of Hoeffding-type decomposition, related
but different from the one defined in the previous chapter. This new decomposition, as well as
the following theoretical developments, are transposed from the theory of generalized U -statistics
of Janson and Nowicki (1991) to our setup with bipartite exchangeable networks.

4.2.1. Aldous-Hoover-Kallenberg representation of RCE matrices

We recall the Aldous-Hoover-Kallenberg (AHK) representation for RCE matrices and its
consequence on U -statistics. If Y is a dissociated RCE matrix, there exists (ξi)i≥1, (ηj)j≥1
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and (ζij)i,j≥1 arrays of i.i.d. random variables with uniform distribution over [0,1] and a real
measurable function ϕ such that for all 1 ≤ i, j <∞,

Yij
a.s.
= ϕ(ξi, ηj , ζij). (4.3)

A function of entries of Y can be written with the AHK variables. In particular, the kernel
h(Yi,j), where i ∈ Pp(N) and j ∈ Pq(N), can be written as

h(Yi,j) = h((ϕ(ξi, ηj , ζij))i∈i,j∈j) =∶ hϕ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i,j∈j),

and hϕ ∶ [0,1]p+q+pq → R is a symmetric function. The U -statistic with kernel h can be rewritten
with hϕ as follows

Un = [(
m

p
)(
n

q
)]
−1

∑
i∈Pp(JmK)
j∈Pq(JnK)

hϕ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i,j∈j).

Denoting hi,j ∶= hϕ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i,j∈j), we can write

Un = [(
m

p
)(
n

q
)]
−1

∑
i∈Pp(JmK)
j∈Pq(JnK)

hi,j.

4.2.2. Graph subsets of AHK variables

The idea behind the new decomposition of a U -statistic is to find orthogonal projections first
for hi,j, for all i and j first, and then use the previous expression to derive the decomposition
for the U -statistic. In order to define the projections for hi,j, we have to define the relevant
subspaces for these projections. These subspaces, defined in the next section, are generated
by subsets of AHK variables. In order to denote these subsets, we will be using a notation
involving bipartite graphs. These graphs have no direct link with the network data, they are
just a formalism to define subsets of AHK variables.

Notations for bipartite graphs

We recall that a bipartite graph G is denoted G = (V1(G), V2(G),E(G)). A subgraph F ⊆ G
is such that V1(F ) ⊆ V1(G), V2(F ) ⊆ V2(G) and E(F ) ⊆ (V1(G) × V2(G)) ∩ E(G). We write
F ⊂ G if F ⊆ G and F ≠ G.

Let E = {ei ∶ i ∈ I} be a countable set indexed by I and σ some mapping σ ∶ I → I. We
denote the action of σ on E by σE = {eσ(i) ∶ i ∈ I}. Let G be a bipartite graph. Suppose that
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V1(G) is indexed by the set I and V2(G) by the set J . The action of a couple of mappings
Φ = (σ1, σ2) on G, where σ1 ∶ I → I and σ1 ∶ J → J , is denoted

ΦG ∶= (σ1V1(G), σ2V2(G),ΦE(G)), (4.4)

where ΦE(G) = {(xσ1(i), yσ2(j)) ∶ (xi, yj) ∈ E(G), (i, j) ∈ I × J}. Among these mappings, the
bijective ones are called permutations. The group of permutations of JnK is denoted Sn.

For two bipartite graphs G1 and G2 with same number of row nodes r = v1(G1) = v1(G2) and
column nodes c = v2(G1) = v2(G2), we say that they are isomorphic if and only if there exists a
couple of permutations Φ = (σ1, σ2) ∈ Sr×Sc such that ΦG1 = G2. In this case, we write G1 ∼ G2.
The number of elements Φ of Sr × Sc such that ΦG = G is the number of automorphisms of G,
denoted ∣Aut(G)∣.

We define Ki,j = (i, j, i×j) the fully connected bipartite graph with row node set i and column
node set j. For p ≥ 0 and q ≥ 0, we denote Kp,q =KJpK,JqK.

For r ≥ 0 and c ≥ 0, we can define a minimal set Γr,c of all subgraphs of Kr,c with r

row nodes and c column nodes, such that every graph G with the same numbers of nodes is
isomorphic to exactly one element of Γr,c. Denote Γ−p,q = ∪(0,0)<(r,c)≤(p,q)Γr,c. As a reminder,
(0,0) < (r, c) ≤ (p, q) means 0 ≤ r ≤ p, 0 ≤ c ≤ q and (r, c) ≠ (0,0). Every non-empty graph G

with v1(G) ≤ p and v2(G) ≤ q is isomorphic to exactly one element of Γ−p,q.

Definition of graph subsets

Let G be a bipartite graph. We can define the set H(G) of AHK variables associated to G
as

H(G) = ((ξi)i∈V1(G), (ηj)j∈V2(G), (ζij)(i,j)∈E(G)).

We see that hi,j = hϕ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i,j∈j) = hϕ(H(Ki,j)). In other words, hi,j belongs to
some functional probability space generated by the AHK variables H(Ki,j). The subspaces on
which hi,j will be decomposed are generated by subsets of H(Ki,j), which are of the form H(G),
where G ⊂Ki,j, as shown in Figure 4.2.

In the following section, we define more rigorously these subspaces and we exhibit some of
their properties.
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2 2
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2

K3,2 G⊂K3,2

Figure 4.2 – A bipartite graph and one subgraph. For each graph, the row nodes are on the right
and the column nodes are on the left. Left: the graph K3,2. Right: a subgraph G extracted
from the row nodes {2,3} and the column nodes {1,2} of K3,2. Here, G only keeps one edge
among the four allowed between the row nodes {2,3} and the column nodes {1,2}. G defines
the subset H(G) = ((ξ2, ξ3), (η1, η2), (ζ13)).

4.2.3. Decomposition of the probability space

Let G be a bipartite graph and denote L2(G) the space of all square-integrable random
variables measurable with respect to σ(H(G)). L2(G) is a Hilbert space with inner product
⟨X,Y ⟩ = E[XY ]. We investigate the following decomposition for X ∈ L2(G)

X = ∑
F⊆G

pF
(X), (4.5)

where the pF (X) are defined by recursion with p∅(X) = E[X] and for all F ,

pF
(X) = E[X ∣H(F )] − ∑

F ′⊂F
pF ′
(X).

Now, we define L∗2(G) ⊂ L2(G) as follows

L∗2(G) = {X ∈ L2(G) ∶ E[X ∣H(F )] = 0,∀F ⊂ G} . (4.6)

These subspaces are linked to the decomposition (4.5). First, we show that each term of the
decomposition belongs indeed to one of these spaces, which shows that the decomposition is a
decomposition on these subspaces. The following proposition can be shown by induction, as
indicated in Appendix 4.A.

Proposition 4.2.1. For two bipartite graphs F ⊆ G and X ∈ L2(G), pF (X) ∈ L∗2(F ).
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Now, we prove the most important property of this decomposition. A Hoeffding-type de-
composition is an orthogonal decomposition. The following proposition shows that it is the
case.

Proposition 4.2.2. For all bipartite graph G, L2(G) is the orthogonal direct sum
L2(G)⊕

⊥
F⊆GL

∗
2(F ).

Proof. Equation (4.5) and Proposition 4.2.1 already show that L2(G)⊕F⊆GL
∗
2(F ). We only

have to show that for any two distinct bipartite graphs G1 and G2, we have L∗2(G1) ⊥ L
∗
2(G2).

Let X1 ∈ L
∗
2(G1) and X2 ∈ L

∗
2(G2). Let G = G1 ∩G2. Since G1 and G2 are distinct, then at

least one of the affirmations G ⊂ G1 and G ⊂ G2 is true. Assume that G ⊂ G1. Therefore,
E[X1X2] = E[E[X1X2 ∣H(G1)]] = E[X1E[X2 ∣H(G)]] = 0, so L∗2(G1) ⊥ L

∗
2(G2).

4.2.4. Decomposition of U-statistics

For all (0,0) ≤ (p, q) ≤ (m,n), (i, j) ∈ Pp(JmK) × Pq(JnK), G ⊆ Ki,j, we can apply the
decomposition (4.5) on hi,j ∈ L2(Ki,j).

pG
(hi,j) = E[hi,j ∣H(G)] − ∑

F⊂G
pF
(hi,j),

where p∅(hi,j) = E[hi,j] = E[hJpK,JqK].

For all G ⊆ Ki,j, we remind that V1(G) ⊆ i and V2(G) ⊆ j. Define V1(G) and V2(G) the
complements of respectively V1(G) and V2(G) in respectively i and j. In fact, the term pG(hi,j)

does not depend on the elements of V1(G) and V2(G), i.e. even if (i1, j1) ≠ (i2, j2), as long as
G ⊂Ki1,j1 ∩Ki2,j2 , we have pG(hi1,j1) = p

G(hi2,j2). Therefore, we use the notation pG ∶= pG(hi,j),
for all G ∈Ki,j. Finally,

hi,j = ∑
G⊆Ki,j

pG,

and U -statistic Um,n can be rewritten

Um,n = (
m

p
)
−1
(
n

q
)
−1

∑
i∈Pp(JmK)
j∈Pq(JnK)

∑
G⊆Ki,j

pG

= (
m

p
)
−1
(
n

q
)
−1

∑
i∈Pp(JmK)
j∈Pq(JnK)

∑
(0,0)≤(r,c)≤(p,q)

∑
G⊆Ki,j

(v1(G),v2(G))=(r,c)

pG

= ∑
(0,0)≤(r,c)≤(p,q)

P r,c
m,n,

where P r,c
m,n = (

m
p
)
−1
(

n
r
)
−1
∑i∈Pp(JmK)

j∈Pq(JnK)
∑ G⊆Ki,j
(v1(G),v2(G))=(r,c)

pG.
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Note that in general, for G ⊆ Ki,j, pG is not symmetric, that means pG(hσ1i,σ2j) ≠ p
G(hi,j)

for a couple of permutations (σ1, σ2) ∈ Sp × Sq. We define p̄G the symmetrized version of pG as

p̄G
= ∑
(σ1,σ2)∈Sp×Sq

pG
(hσ1i,σ2j) = ∑

Φ∈Sp×Sq

pΦG
= ∑

G′⊆Ki,j
G′∼G

pG′ .

For two isomorphic subgraphs G1 and G2 of Ki,j, we have p̄G1 = p̄G2 by symmetry. There
is exactly one element G ∈ Γr,c, where r = v1(G1) = v1(G2) and c = v2(G1) = v2(G2), which is
isomorphic to both G1 and G2. Therefore, for all (i, j) ∈ Pp(JmK) ×Pq(JnK), we can index these
quantities with the graph G ∈ Γr,c instead of G ∈Ki,j. Then, we denote

p̃G
i,j ∶= p̄

G′ ,

where G ∈ Γr,c and G′ is any subgraph of Ki,j which is isomorphic to G. We can also denote p̃G

the function p̃G ∶ (i, j)z→ p̃G
i,j.

Because there are r!(pr)c!(
q
c
)∣Aut(G)∣−1 distinct subgraphs of Ki,j that are isomorphic to

G ∈ Γr,c, we obtain the following decomposition

hi,j = (p!q!)−1
∑

G⊆Ki,j

p̃G
= ∑

0≤(r,c)≤(p,q)
∑

G∈Γr,c

1
(p − r)!(q − c)!∣Aut(G)∣

p̃G
i,j

and

P r,c
m,n = ∑

G∈Γr,c

1
(p − r)!(q − c)!∣Aut(G)∣

P̃G
m,n,

where for all G ∈ Γr,c, P̃G
m,n = (

m
p
)
−1
(

n
q
)
−1
∑i∈Pp(JmK)

j∈Pq(JnK)
p̃G

i,j is the U -statistic of kernel p̃G. Finally,

the Um,n can be rewritten as

Um,n = ∑
0≤(r,c)≤(p,q)

∑
G∈Γr,c

1
(p − r)!(q − c)!∣Aut(G)∣

P̃G
m,n.

This decomposition is related to the one used in Chapter 3. The latter consists in an
orthogonal projection of hi,j ∈ L2(Ki,j) on the subspaces (L2(Ki′,j′))i′⊆i,j′⊆j, where

L2(Ki,j) = {X ∈ L2(Ki,j) ∶ E[X ∣H(Ki′,j′)] = 0,∀i′ ⊆ i, j′ ⊆ j}.

Comparing this with the subspaces (4.6), we see that the decomposition on the subspaces of
the form (4.2.4) is coarser, as they only consist in subspaces generated by graphs of the form
Ki,j. For this reason, it does not capture the subtleties determining the limit distribution of
degenerate U -statistics. We will see that the new decomposition is able to fill this gap, at the
cost of being more complex.
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4.2.5. Variance

Just like the classical Hoeffding decomposition of U -statistics of i.i.d. observations, our
new decomposition can also be used to decompose the variance of U -statistics of row-column
exchangeable matrices. The following two results come from the orthogonality of the projections.
The first expression links V[Um,n] to the variance of the projections V[pG] = E[(pG)2]. It is
obtained by direct calculation, as shown in Appendix 4.B.

Proposition 4.2.3.

V[Um,n] = ∑
(0,0)<(r,c)≤(p,q)

(m − r)!
m!

(n − c)!
n!

V (r,c),

where for all (0,0) < (r, c) ≤ (p, q),

V (r,c)
=

p!2q!2

(p − r)!2(q − c)!2 ∑
G∈Γr,c

∣Aut(G)∣−1E[(pG
)

2
].

The second expression links V[Um,n] to the variance of the U -statistics P̃G
m,n associated to

the symmetrized projections p̃G.

Corollary 4.2.4.

V[Um,n] = ∑
0<(r,c)≤(p,q)

∑
G∈Γr,c

(
1

(p − r)!(q − c)!∣Aut(G)∣
)

2
V[P̃G

m,n]

It can actually be naturally obtained from Proposition 4.2.3 using the following lemma.

Lemma 4.2.5.
V[P̃G

m,n] =
(m − r)!
m!

(n − c)!
n!

p!2q!2∣Aut(G)∣E[(pG
)

2
].

The proof of this lemma requires to handle the symmetrized projections, which can be tricky.
In this regard, the next lemma is particularly helpful. For this reason, it will be used several
times in this chapter. The proofs of both lemmas are given in Appendix 4.B.

Lemma 4.2.6. Let G subgraph of Kp,q. Let (G1
i,j)i∈Pp(JmK)

j∈Pq(JnK)
and (G2

i,j)i∈Pp(JmK)
j∈Pq(JnK)

two families of

graphs such that for all (i, j) ∈ Pp(JmK)×Pq(JnK), both G1
i,j,G

2
i,j ⊆Ki,j and are isomorphic to G.

We have

∑
i1,i2∈Pp(JmK)
j1,j2∈Pq(JnK)

∑
Φ1,Φ2∈Sp×Sq

1(Φ1G
1
i1,j1 = Φ2G

2
i2,j2) =

m!(m − r)!
(m − p)!2

n!(n − c)!
(n − q)!2

∣Aut(G)∣.
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4.2.6. Principal part and support graphs

Let us use the usual asymptotic framework, with a sequence for network sizes (mN , nN)

such that mN + nN = N and mN/N ÐÐÐ→
N→∞

ρ, for some ρ ∈]0,1[. We denote UN ∶= UmN ,nN
,

P r,c
N ∶= P r,c

mN ,nN
and P̃G

N ∶= P̃
G
mN ,nN

. The kernel h is still a function of a submatrix of size p × q.

In this asymptotic framework, we now define the principal part of UN . Let

p(k) ∶= ∑
G∈Kp,q

v1(G)+v2(G)=k

pG,

for 1 ≤ k ≤ p+q. Let d be the smallest integer such that p(d) ≠ 0. We call d−1 the degree of degen-
eracy of UN . Then we have P r,c

N = 0 for all (r, c) such that r + c < d. We call ∑(0,0)≤(r,c)≤(p,q)
r+c=d

P r,c
N

the principal part of UN and the couples (r, c) such that r + c = d are the principal degrees of
UN . We call the principal support graphs of UN the graphs G ⊆Km,n such that

● v1(G) + v2(G) = d,
● pG ≠ 0.

Example. Let Y be a random matrix such that Yij
i.i.d.
∼ N (0,1). Let h1 and h2 be the kernel

functions defined by h1(Y{1},{1,2}) = Y11Y12 and h2(Y{1,2},{1,2}) = (Y11Y22 + Y12Y21)/2, and Uh1
N

and Uh2
N are the U -statistics associated to these kernels.

Y admits a natural AHK representation, which is Yij
a.s.
= ϕ(ξi, ηj , ζij) = Φ−1(ζij), where Φ−1 is

the inverse c.d.f. of the standard Gaussian distribution. Remarkably, Yij does not depend on
the AHK variables ξi and ηj . We have E[Yij] = E[Yij ∣ ξi] = E[Yij ∣ ηj] = E[Yij ∣ ξi, ηj] = 0 and
E[Yij ∣ ξi, ηj , ζij] = Yij .

● For Uh1
N , E[h1(Y{1,2},{1,2}) ∣ H(G)] ≠ 0 if and only if H(K1,2) = (ξ1, η1, η2, ζ11, ζ12) ⊆

H(G). Indeed, we have for all G ⊂K1,2, E[h1(Y{1},{1,2}) ∣H(G)] = 0 and E[h1(Y{1},{1,2}) ∣

H(K1,2)] = Y11Y12. Therefore, the only graph G ⊆ K1,2 such that pG ≠ 0 is G = K1,2.
Thus, Uh1

N is degenerate of order 2 and the family of principal support graphs of Uh1
N is

(Ki,j)i∈P1(JmN K),j∈P2(JnN K) (Fig. 4.3).
● For Uh2

N , E[h2(Y{1,2},{1,2}) ∣ H(G)] ≠ 0 if and only if (ξ1, ξ2, η1, η2, ζ11, ζ22) ⊆ H(G) or
(ξ1, ξ2, η1, η2, ζ12, ζ21) ⊆H(G). Therefore, if E[h2(Y{1,2},{1,2}) ∣H(G)] ≠ 0, then v1(G) = 2
or v2(G) = 2, so Uh2

N is degenerate of order 3. The principal support graphs are the graphs
which are isomorphic to one graph G ⊆ Γ2,2 such that E[h2(Y{1,2},{1,2}) ∣ H(G)] ≠ 0
(Fig. 4.3).

From Proposition 4.2.3,

V[UN ] = ∑
(0,0)<(r,c)≤(p,q)

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c)
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Figure 4.3 – Examples of principal support graphs for Uh1
N (left) and Uh2

N (right). The principal
support graphs of Uh1

N are the graphs that are isomorphic to the left one. The principal support
graphs of Uh2

N are the 2 × 2 graphs containing graphs that are isomorphic to the right one.

We see that V[UN ] is the sum of the p × q terms of the form (mN−r)!
mN !

(nN−c)!
nN ! V (r,c). Each term

behaves like (mN−r)!
mN !

(nN−c)!
nN ! V (r,c) ≍ N−r−c. If for some (r, c), ∑ G∈Kp,q

(v1(G),v2(G))=(r,c)
pG = 0, then

V (r,c) = 0. Therefore,

V[UN ] = N
−d

∑
(0,0)<(r,c)≤(p,q)

r+c=d

ρ−r
(1 − ρ)−cV (r,c)

+ o(N−d
)

= N−d
d

∑
r=0

ρ−r
(1 − ρ)−d−rV (r,d−r)

+ o(N−d
)

This is a hint that the right normalization for the convergence in distribution of UN is given by
its principal degrees. The following theorem, proven in Appendix 4.C, confirms it.

Theorem 4.2.7. There is a random variable W such that Nd/2(UN − p
∅)

D
Ð→W if and only if

Nd/2
∑(0,0)<(r,c)≤(p,q)

r+c=d
P r,c

N

D
Ð→W .

This theorem says that the limit distribution of UN − p
∅ renormalized by Nd/2 is the same

as that of its principal part ∑(0,0)≤(r,c)≤(p,q)
r+c=d

P r,c
N , renormalized by the same quantity. Therefore,

we shall investigate the asymptotic behaviour of UN by studying its principal part. Next, we
identify the limit distribution for the Nd/2(UN − p

∅) using the properties of the principal part.
In particular, we will see that the limit distribution depends more precisely on the form of the
principal support graphs of UN .

4.2.7. Gaussian case

Theorem 4.2.8. If all principal support graphs of UN are connected, then

Nd/2
(UN − p

∅
)

D
ÐÐÐ→
N→∞

N (0, σ2
),
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where
σ2
= ∑
(0,0)<(r,c)≤(p,q)

r+c=d

ρ−r
(1 − ρ)−cV (r,c).

The proof of this theorem uses the fact that Nd/2(UN − p
∅) has the same limit as

Nd/2
∑(0,0)<(r,c)≤(p,q)

r+c=d
P r,c

N , where

P r,c
N = ∑

G∈Γr,c

1
(p − r)!(q − c)!∣Aut(G)∣

P̃G
N .

The convergence of the terms Nd/2P̃G
N is proved by the methods of moments (Lem. 4.2.10). The

calculation of the moments involve sums of terms of the form E[∏K
k=1 p

Gk], the values of which
depend on the configuration of the sequence of graphs G1, ...,Gk (Lem. 4.2.9). Therefore, the
moments are obtained by counting the frequency of the relevant configurations in these sums.
Below, Lemmas 4.2.9 and 4.2.10 are established before completing the proof of Theorem 4.2.8.

Lemma 4.2.9. Let G1, ...,GK be subgraphs of KmN ,nN
. If E[∏K

k=1 p
Gk] ≠ 0, then for all Gk,

1 ≤ k ≤ K, each vertex of V1(Gk) or V2(Gk) or edge of E(Gk) must also appear in another Gℓ,
ℓ ≠ k.

Furthermore, if G1, ...,GK are connected and non-empty, then either G1, ...,GK coincide in
K/2 pairs (and K is necessarily even), or some vertex belongs to at least three of them.

Proof. For some ℓ ∈ JKK, denote G(−ℓ)
1∶k = ∪

k
i=1
i≠ℓ
Gi. We have

E[
K

∏
k=1

pGk] = E[E[
K

∏
k=1

pGk ∣H(G
(−ℓ)
1∶K )]]

=
K

∏
k=1
k≠ℓ

pGkE[E[pGℓ ∣H(G
(−ℓ)
1∶K )]]

=
K

∏
k=1
k≠ℓ

pGkE[E[pGℓ ∣H(Gℓ ∩G
(−ℓ)
1∶K )]].

(4.7)

Suppose there is a vertex or edge of a Gℓ that does not belong to any other Gk, k ≠ ℓ. In this
case, Gℓ ∩G

(−ℓ)
1∶K ⊂ Gℓ, so E[pGℓ ∣H(Gℓ ∩G

(−ℓ)
1∶K )] = 0, which proves the first result.

From that result, if E[∏K
k=1 p

Gk] ≠ 0 and no vertex belongs to more than two of G1, ...,GK ,
then each vertex and edge belongs to exactly two of them. That also means that every connected
component must belong to exactly two of them. Therefore, if all graphs are connected, then
these graphs coincide in pairs.
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Lemma 4.2.10. Let (Gk)1≤k≤K be a sequence of distinct connected graphs of Γ−p,q, with v1(Gk) =

rk and v2(Gk) = ck for 1 ≤ k ≤K. We have that

(m
rk/2
N n

ck/2
N P̃Gk

N )1≤k≤K
D
Ð→ (Wk)1≤k≤K , (4.8)

where Wk are independent variables with respective distribution N (0, p!2q!2∣Aut(Gk)∣E[(pGk)2]).

Proof. Let α = (α1, α2) where α1 is a mapping from JpK to JmN K and α2 is a mapping from JqK

to JnN K. Denote α(G)

Let ak be nonnegative integers. For all (i, j) ∈ Pp(JmN K)×Pq(JnN K), let Gk,i,j be a graph of
Ki,j which is isomorphic to Gk.

E[
K

∏
k=1
(m

rk/2
N n

ck/2
N P̃Gk

N )
ak]

=m
∑K

k=1 akrk/2
N (

mN

p
)
−∑K

k=1 ak

n
∑K

k=1 akck/2
N (

nN

q
)
−∑K

k=1 ak

E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K

∏
k=1
( ∑

ik∈Pp(JmN K)
jk∈Pq(JnN K)

p̃Gk

ik,jk
)

ak

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where we can develop

E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K

∏
k=1
( ∑

ik∈Pp(JmN K)
jk∈Pq(JnN K)

p̃Gk

ik,jk
)

ak

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ∑
iℓ
k∈Pp(JmN K)
jℓ
k∈Pq(JnN K)

E [
K

∏
k=1

ak

∏
ℓ=1
p̃Gk

iℓ
k

,jℓ
k

]

= ∑
iℓ
k∈Pp(JmN K)
jℓ
k∈Pq(JnN K)

∑
Φk

ℓ
∈Sp×Sq

E [
K

∏
k=1

ak

∏
ℓ=1
p

Φℓ
kG

k,iℓ
k

,jℓ
k ]

Lemma 4.2.9 states that E[∏K
k=1∏

ak

ℓ=1 p
Φℓ

kG
k,iℓ

k
,jℓ

k ] ≠ 0 if and only if either all the Φℓ
kGk,iℓ

k
,jℓ

k

coincide in pairs (and only in pairs), or no vertex appears in exactly one of these graphs and at
least one vertex appears in at least three.

In the second case, assume without loss of generality that a row node appears in three
graphs. Then G∗(iℓ

k
),(jℓ

k
) ∶= ∪

K
k=1 ∪

ak
j=1 Φℓ

kGk,iℓ
k

,jℓ
k

has v1(G
∗
(iℓ

k
),(jℓ

k
)) row nodes and v2(G

∗
(iℓ

k
),(jℓ

k
))

column nodes, where max rk ≤ v1(G
∗
(iℓ

k
),(jℓ

k
)) ≤ ∑

K
k=1 akrk/2 − 1 and max ck ≤ v2(G

∗
(iℓ

k
),(jℓ

k
)) ≤

∑
K
k=1 akck/2 − 1 (we have necessarily max rk ≤ ∑

K
k=1 akrk/2 − 1 and max ck ≤ ∑

K
k=1 akck/2 − 1, else

E[∏K
k=1∏

ak

ℓ=1 p
Φℓ

kG
k,iℓ

k
,jℓ

k ] = 0).
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Let (max rk,max ck) ≤ (r∗, c∗) ≤ (p, q). Count the number of terms of the sum such that
v1(G

∗
(iℓ

k
),(jℓ

k
)) = r

∗ and v2(G
∗
(iℓ

k
),(jℓ

k
)) = c

∗. There are exactly (mN

r∗
)(

nN

c∗
) ways to pick r∗ row nodes

and c∗ nodes for G∗(iℓ
k
),(jℓ

k
). Now, for a specific set of r∗ row nodes and c∗ column nodes, for each

1 ≤ k ≤K, 1 ≤ ℓ ≤ ak, there are (r
∗

rk
)(

c∗

ck
)(

mN−r∗

p−rk
)(

nN−c∗

q−ck
) ways to pick (iℓk, jℓ

k) such that the nodes
of Gk,iℓ

k
,jℓ

k
are contained in the r∗ specific row nodes and c∗ specific column nodes. Therefore,

there are at most p!q!(r
∗

rk
)(

c∗

ck
)(

mN−r∗

p−rk
)(

nN−c∗

q−ck
) picks for (iℓk, jℓ

k) and Φℓ
k. Finally, the number of

terms is least than

Br∗,c∗

N ∶= (
mN

r∗
)(
nN

c∗
)

K

∏
k=1

ak

∏
ℓ=1
p!q!(r

∗

rk
)(
mN − r

∗

p − rk
)(
nN − c

∗

q − ck
)

= (
mN

r∗
)(
nN

c∗
)

K

∏
k=1
[p!q!(r

∗

rk
)(
mN − r

∗

p − rk
)(
nN − c

∗

q − ck
)]

ak

= O (mr∗

N n
c∗

N

K

∏
k=1
[mp−rk

N nq−ck

N ]
ak
)

= O (m
r∗+∑K

k=1 ak(p−rk)
N n

c∗+∑K
k=1 ak(q−ck)

N ) .

Now the total number of these terms is

BN ≤ ∑

(max rk,max ck)≤(r∗,c∗)≤(∑K
k=1 akrk/2−1,∑K

k=1 akck/2)
Br∗,c∗

N

= O(B
∑K

k=1 akrk/2−1,∑K
k=1 akck/2

N )

= O (m
∑K

k=1 ak(p−rk/2)−1
N n

∑K
k=1 ak(q−ck/2)

N )

= o(m
∑K

k=1 ak(p−rk/2)
N n

∑K
k=1 ak(q−ck/2)

N ) .

We notice that the contribution of these terms are o(1) in equation (4.2.7).

Now, there remains the terms of the first case, where the Φℓ
kGk,iℓ

k
,jℓ

k
coincide in pairs. Note

that since the Gk are non-isomorphic, only graphs arising for the permutations of a same graph
Gk can coincide. Therefore, the ak are necessarily even. Furthermore, for each k, there are ak/2
different pairs of coinciding graphs Φℓ

kGk,iℓ
k

,jℓ
k
. There are ak!

2ak/2(ak/2)!
ways to partition a set of

ak graphs into ak/2 pairs.

Fix k, ℓ1, ℓ2. The number of picks for iℓ1
k , j

ℓ1
k , i

ℓ2
k , j

ℓ2
k ,Φ

ℓ1 ,Φℓ2 such that Φℓ1
k Gk,iℓ1

k
,jℓ1

k

=

Φℓ2
k Gk,iℓ2

k
,jℓ2

k

is given by Lemma 4.2.6. Accounting for all ak/2 pairs of the type (ℓ1, ℓ2), there are

mN !(mN − rk)!
(mN − p)!2

nN !(nN − ck)!
(nN − q)!2

∣Aut(G)∣.

Therefore, taking into account the number of possible pairings and the picks for all 1 ≤ k ≤K,
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1 ≤ ℓ ≤ ak, there are

AN =
K

∏
k=1

ak!
2ak/2(ak/2)!

(
mN !(mN − rk)!
(mN − p)!2

nN !(nN − ck)!
(nN − q)!2

∣Aut(Gk)∣)

ak/2

=m
∑K

k=1 ak(rk/2−p)
N n

∑K
k=1 ak(ck/2−q)

N

K

∏
k=1

ak!
2ak/2(ak/2)!

∣Aut(Gk)∣
ak/2

+ o(m
∑K

k=1 ak(rk/2−p)
N n

∑K
k=1 ak(ck/2−q)

N ) .

Each of these AN terms is equal to E [∏K
k=1∏

ak

ℓ=1 p
Φℓ

kG
k,iℓ

k
,jℓ

k ] =∏
K
k=1 E[(pGk)2]ak/2.

In conclusion, if all the ak are even, then

E [
K

∏
k=1
(m

rk/2
N n

ck/2
N P̃Gk

N )
ak] =m

∑K
k=1 akrk/2

N (
mN

p
)
−∑K

k=1 ak

n
∑K

k=1 akck/2
N (

nN

q
)
−∑K

k=1 ak

×AN

K

∏
k=1

E[(pGk)
2
]
ak/2

= (p!q!)∑
K
k=1 ak

K

∏
k=1

ak!
2ak/2(ak/2)!

∣Aut(Gk)∣
ak/2E[(pGk)

2
]
ak/2

=
K

∏
k=1

ak!
2ak/2(ak/2)!

(p!2q!2∣Aut(Gk)∣E[(pGk)
2
])

ak/2
,

and in the general case,

E[
K

∏
k=1
(m

rk/2
N n

ck/2
N P̃Gk

N )
ak]

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∏
K
k=1

ak!
2ak/2(ak/2)!

(p!2q!2∣Aut(Gk)∣E[(pGk)2])
ak/2 if all ak are even

0 if at least one ak is odd
.

(4.9)

Else, if there is at least one odd ak, we have E[∏K
k=1(m

rk/2
N n

ck/2
N P̃Gk

N )
ak] = 0.

We remind that the moment of order a of a gaussian variable X with mean 0 and variance
σ2 is

E[Xa
] =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a!
2a/2(a/2)!σ

a if a is even

0 if a is odd
.

So the application of the methods of moments to equation (4.9) concludes the proof of this
lemma.

Proof of Theorem 4.2.8. Theorem 4.2.7 states that Nd/2(UN − p
∅) has the same limit as

Nd/2
∑(0,0)<(r,c)≤(p,q)

r+c=d
P r,c

N .
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For all (0,0) < (r, c) ≤ (p, q),

P r,c
N = ∑

G∈Γr,c

1
(p − r)!(q − c)!∣Aut(G)∣

P̃G
N .

So

Nd/2
∑

(0,0)<(r,c)≤(p,q)
r+c=d

P r,c
N = ∑

(0,0)<(r,c)≤(p,q)
r+c=d

Nd/2m−r/2
N n

−c/2
N ∑

G∈Γr,c

m
r/2
N n

c/2
N P̃G

N

(p − r)!(q − c)!∣Aut(G)∣
.

By construction, Nd/2m−r/2
N n

−c/2
N ÐÐÐ→

N→∞
ρ−r/2(1 − ρ)−c/2. Therefore, by Lemma 4.2.10,

Nd/2
∑(0,0)<(r,c)≤(p,q)

r+c=d
P r,c

N converges in distribution to

Z = ∑
(0,0)<(r,c)≤(p,q)

r+c=d

ρ−r/2
(1 − ρ)−c/2

∑
G∈Γr,c

WG,

where for all (r, c), G ∈ Γr,c, WG are independent gaussian variables with mean 0 and variance
p!2q!2

(p−r)!2(q−c)!2∣Aut(G)∣E[(p
G)2].

Finally, it follows that Z is a gaussian variable with mean 0 and variance
∑(0,0)<(r,c)≤(p,q)

r+c=d
ρ−r(1 − ρ)−cV (r,c) where

V (r,c)
=

p!2q!2

(p − r)!2(q − c)!2 ∑
G∈Γr,c

∣Aut(G)∣−1E[(pG
)

2
].

Example (continued). Let Y be a random matrix such that Yij
i.i.d.
∼ N (0,1). Let h1 be the kernel

function defined by h1(Y{1},{1,2}) = Y11Y12 and Uh1
N the U -statistic associated to this kernel. In

Section 4.2.6, we have seen that Uh1
N is degenerate of order 2 and the family of principal support

graphs of Uh1
N is (Ki,j)i∈P1(JmN K),j∈P2(JnN K), which are all connected.

Therefore, Theorem 4.2.8 implies

N3/2Uh1
N

D
ÐÐÐ→
N→∞

N (0, σ2
1),

where σ2
1 = V

(1,2) = 4
ρ(1−ρ)2 ∣Aut(K1,2)∣

−1E[(pK1,2)2] = 4
ρ(1−ρ)2

1
2E[Y

2
11Y

2
12] =

2
ρ(1−ρ)2 .

4.2.8. Other limit distributions

Denote b the maximum number of connected components in the principal support graph.
Theorem 4.2.8 ensures that the limit distribution is gaussian when all principal support graphs
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are connected, that means when b = 1. In the theory of Janson and Nowicki (1991), the form
of the limit distribution of generalized U -statistics is is determined by the number b. More
precisely, the limit distribution is a polynomial of independent Gaussian variables, of degree b.
Although we have not proved a similar result for our U -statistics of RCE matrices, it is natural
to wonder if the result of Janson and Nowicki (1991) in the case b > 1 can be generalized the
same way as in the Gaussian case (b = 1). Therefore, we risk a conjecture, as an attempt to
transpose Theorem 3 of Janson and Nowicki (1991) to our U -statistics. It will remain unproven
in this thesis.

Before giving the conjecture, let us give some definitions and notations. Let F and G be two
bipartite graphs, with V1(F ) = Jv1(F )K, V2(F ) = Jv2(F )K, V1(G) = Jv1(G)K and V2(G) = Jv2(G)K.
Let αF (G) be the transformation of the graph G where an offset of v1(F ) is applied to the row
node labels and an offset of v2(F ) is applied to the column node labels, i.e.

● V1(αF (G)) = {v1(F ) + 1, ..., v1(F ) + v1(G)},
● V2(αF (G)) = {v2(F ) + 1, ..., v2(F ) + v2(G)},
● E(αF (G)) = {(v1(F ) + x, v2(F ) + y) ∶ (x, y) ∈ E(G)}.

In other words, αF defines a new numbering for the nodes and edges of G such that the nodes of
G are labeled using numbers larger than those used of nodes of F . We define the disjoint union
F ⊕G ∶= F ∪ αF (G).

Let f1 ∈ L2(Kr1,c1) and f2 ∈ L2(Kr2,c2). We define f1 ⊗ f2 ∈ L2(Kr1+r2,c1+c2) by

(f1 ⊗ f2)(H(Kr1+r2,c1+c2)) = (f1 ⊗ f2)((ξi)1≤i≤r1+r2 , (ηj)1≤j≤c1+c2 , (ζij)1≤i≤r1+r2,1≤j≤c1+c2)

= f1((ξi)1≤i≤r1 , (ηj)1≤j≤c1 , (ζij)1≤i≤r1,1≤j≤c1)

× f2((ξr1+i)1≤i≤r2 , (ηc1+j)1≤j≤c2 , (ζr1+i,c1+j)1≤i≤r2,1≤j≤c2)

= f1(H(Kr1,c1)) × f2(H(αKr1,c1
(Kr2,c2))).

In the previous sections, we have not given a precise form for Γr,c. We can, without loss
of generality, suppose that all the graphs G ∈ Γr,c which are disconnected with s components
are chosen of the form G1 ⊕ ... ⊕ Gs, where Gt ∈ Γ̄rt,ct , the complement of Γrt,ct in the set of
subgraphs of Krt,ct with rt column row and ct column nodes, and (rt, ct) are the dimensions of
Gt, for each 1 ≤ t ≤ s. For a graph G = G1 ⊕ ... ⊕ Gs, if ft ∈ L

∗
2(Gt) for each 1 ≤ t ≤ s, then

f1 ⊗ ...⊗ fs ∈ L
∗
2(G). Therefore, if (eGt

k )k≥1 is a orthonormal basis for L∗2(Gt) for each 1 ≤ t ≤ s,
then (eGs

k1
⊗ ...⊗ eGs

ks
)(k1,...,ks)∈Ns is a orthonormal basis for L∗2(G).

Conjecture 4.2.11.

Nd/2
(UN − p

∅
)

D
ÐÐÐ→
N→∞

W, (4.10)
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for some random variable W . This random variable can be written

W = ∑
(0,0)<(r,c)≤(p,q)

r+c=d

p!q!
(p − r)!(q − c)!

d

∑
s=1

∑
(G1,...,Gs)∈Γ̄r1,c1×...×Γ̄rs,cs

r1+...+rs=r,c1+...+cs=c

∑
t∈Ns

1
s!

s

∏
k=1
∣Aut(Gk)∣

−1

× ⟨h, eG1
t1
⊗ ...⊗ eGs

ts
⟩
∞
∏
ℓ=1
Hκℓ(t)(W

Gℓ
tℓ
),

(4.11)

where
● for all G, (eG

t )t≥1 is an orthonormal basis of the subspace of symmetric functions in
L∗2(G),
● (WG

t )G,t≥1 are independent standard normal variables,
● Hu is the u-th Hermite polynomial, for u ≥ 0,
● κℓ(t) is the number of times ℓ appears as an element in the d-tuple t.

Remark 3. In the Theorem 3 of Janson and Nowicki (1991), the polynomials ∏∞ℓ=1Hκℓ(t)(W
Gℓ
tℓ
)

are replaced by Wick products ∶ WG1
t1
...WGs

ts
∶. These quantities are in fact equal. Indeed, the

Wick product between s random variables (X1, ...,Xs) can be given by the following formula

∶X1...Xs ∶ =∑(−1)ℓ
ℓ

∏
j=1
⟨Xa(j),Xb(j)⟩∏

r∈A
Xr,

where the sum is over all subsets A ⊆ JsK and partitions of JsK/A into ℓ pairs {a(j), b(j)}. For
all integers a1, ..., as, we have ∶ Xa1

1 ...Xas
s ∶ = ∏

s
t=1Hat(Xs) when X1, ...,Xs are independent

standard normal variables (see for example Major, 1981). This proves that

∶WG1
t1
...WGs

ts
∶ =

∞
∏
ℓ=1
Hκℓ(t)(W

Gℓ
tℓ
).

Remark 4. The kernel of our U -statistics is a function of the AHK variables
hϕ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i,j∈j) where ∣i∣ = p and ∣j∣ = q. The case of U -statistics of i.i.d. observations
is obtained when setting q = 0. As a consequence, Theorem 1.5.13, giving the asymptotic distri-
bution for degenerate U -statistics of i.i.d. observations, can be retrieved from Theorem 4.2.11
by forcing q = 0. It follows that c = 0 and r = s = d. Necessarily, r1 = ... = rs = 1, c1 = ... = cs = 0
and the graphs in (G1, ...,Gs) are each reduced to a single vertex, i.e. they are equal to K1,0.
This implies that we only need one basis (et)t≥1 of L∗2(K1,0). In this case, the limit becomes

W = (
p

d
) ∑

t∈Ns

⟨h, et1 ⊗ ...⊗ ets⟩
∞
∏
ℓ=1
Hκℓ(t)(Wtℓ

). (4.12)

This expression is equivalent to the expression of the limit in Theorem 1.5.13 by noticing that
because et1 ⊗ ... ⊗ ets ∈ L

∗
2(Kd,0), we have ⟨h, et1 ⊗ ...⊗ ets⟩ = ⟨h

(d), et1 ⊗ ...⊗ ets⟩, where h(d) is
the projection of h on L∗2(Kd,0).

Example (continued). Let Y be a random matrix such that Yij
i.i.d.
∼ N (0,1). Let h2 be the kernel

function defined by h2(Y{1,2},{1,2}) = (Y11Y22 + Y12Y21)/2 and Uh2
N the U -statistic associated to
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this kernel.
Let G1 and G2 be the graphs defined by H(G1) = (ξ1, ξ2, η1, η2, ζ11, ζ22) and H(G2) =

(ξ1, ξ2, η1, η2, ζ12, ζ21). In Section 4.2.6, we have seen that E[h2(Y{1,2},{1,2}) ∣ H(G)] ≠ 0 if and
only if G1 ⊆ G or G2 ⊆ G. Therefore, G1 and G2 are principal support graphs with 2 components
and the other principal support graphs of Uh2

N are connected. Thus, if true, Conjecture 4.2.11
would imply

N2Uh2 D
ÐÐÐ→
N→∞

W,

where W is some polynomial function of independent Gaussian variables of degree 2.

4.2.9. Other asymptotic frameworks

In previous sections, we have assumed that mN + nN = N and mN/N → ρ ∈]0,1[. It is in
fact possible to extend all our results to any asymptotic behavior. In this section, let us only
assume that mN ÐÐÐ→

N→∞
∞ and nN ÐÐÐ→

N→∞
∞ and see how it affects our results.

The principal part of UN should be the dominant part of the variance. Remember that
Proposition 4.2.3 states that

V[UN ] = ∑
(0,0)<(r,c)≤(p,q)

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c).

We see that V[UN ] is the sum of the p × q terms of the form (mN−r)!
mN !

(nN−c)!
nN ! V (r,c). Each term

behaves like (mN−r)!
mN !

(nN−c)!
nN ! V (r,c) ≍m−r

N n−c
N . The dominant part of V[UN ] is consist of the terms

m−r
N n−c

N decreasing the slowest such that V (r,c) ≠ 0.

There is no equivalent to the previously defined degree of degeneracy, but we can redefine
principal degrees. Let the family of couples ((rℓ, cℓ))1≤ℓ≤L be such that mr1

Nn
c1
N ≍ ... ≍ m

rL
N ncL

N

and V[UN ] ≍ ∑
L
ℓ=1

V (rℓ,cℓ)

m
rℓ
N n

cℓ
N

. We can call these couples the principal degrees of UN , by analogy

with the previous case. The quantity ∑L
ℓ=1 P

rℓ,cℓ

N is called the principal part of UN . We call the
principal support graphs of UN the graphs G such that

● (v1(G), v2(G)) ∈ {(rℓ, cℓ) ∶ 1 ≤ ℓ ≤ L},
● pG ≠ 0.

Example 2. Suppose (mN , nN) = (N,
√
N) and V (0,1) = 0 but V (0,2) ≠ 0 and V (1,0) ≠ 0, then the

principal degrees are (1,0) and (0,2) because mN = n
2
N = N and V[UN ] = N

−1(V (1,0) + V (0,2)).
In this case, one valid choice of γ(N) is γ(N) = N .

Example 3. Suppose again that (mN , nN) = (N,
√
N), but this time V (0,1) = V (0,2) = V (1,0) = 0.

If V (1,1) ≠ 0 and V (0,3) ≠ 0, then the principal degrees are (1,1) and (0,3) because mNnN =

n3
N = N

3/2. In this case, one valid choice of γ(N) is γ(N) = N3/2.
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In this asymptotic framework, there is no reason that Nd/2 is the right normalization for the
weak convergence of U -statistics. If the elements of ((rℓ, cℓ))1≤ℓ≤L are the principal degrees of
UN , then there is a function γ such that m−rℓ

N n−cℓ
N γ(N) ÐÐÐ→

N→∞
αℓ, where αℓ > 0 for all 1 ≤ ℓ ≤ L

and γ(N)V[UN ] = ∑1≤ℓ≤L αℓV
(rℓ,cℓ)+o(1). Next, we state the equivalent result to Theorem 4.2.7

in the new framework. The proof for this theorem is given in 4.D.1.

Theorem 4.2.12. There is a random variable W such that
√
γ(N)∑L

ℓ=1 P
rℓ,cℓ

N

D
Ð→W if and only

if
√
γ(N)(UN − p

∅)
D
Ð→W .

This theorem says that the limit distribution of UN −p
∅ renormalized by

√
γ(N) is the same

as that of its principal part ∑L
ℓ=1 P

rℓ,cℓ

N , renormalized by the same quantity. Therefore, similar
as in the initial framework, we shall investigate the asymptotic behaviour of UN by studying its
principal part.

In practice, one has to identify the principal part by finding the principal degrees of UN .
The principal degrees depend both on the kernel h and the asymptotic behaviour of (mN , nN).
After finding the principal degrees, then a function γ(N) can be found. With γ(N) and the
principal degrees, the coefficients αℓ can be calculated to yield an expression for the variance.
We will illustrate this in examples later.

Now, we derive the equivalent to Theorem 4.2.8, i.e. the convergence result when the princi-
pal support graphs of UN are connected. The proof of this theorem is given in Appendix 4.D.2.

Theorem 4.2.13. If all principal support graphs of UN are connected, then
√
γ(N)(UN − p

∅
)

D
ÐÐÐ→
N→∞

N (0, σ2
),

where

σ2
=

L

∑
ℓ=1
αℓV

(rℓ,cℓ).

Unsurprisingly, the limit distribution for
√
γ(N)(UN − p

∅) is still a Gaussian with another
expression for the variance. This variance consists of terms associated of the principal degrees
of UN .

4.3. Practical identification of limit distribution of U-statistics

In practice, once the network models and the estimators have been decided, applying the
theoretical results is not straightforward. First, we do not generally know a priori whether
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a U -statistic is degenerate or not. If it is degenerate, the order of degeneracy is also usually
unknown. Without any investigation, we do not always know which theorem to apply to obtain
the form of the limit distribution. Second, even if some theorem is applied, precisely identifying
the limit distribution may be tedious, for example, the asymptotic variance given by the formula
in Theorem 4.2.8 is not easy to compute. In this section, we give a few hints and directions to
identify the limit distribution of a U -statistic, with emphasis on degenerate cases. We use the
asymptotic framework in which mN + nN = N and mN/N ÐÐÐ→

N→∞
ρ ∈]0,1[, but many techniques

presented here can be generalized to all frameworks.

4.3.1. Degeneracy

The first step is to determine whether the U -statistic is degenerate or not. This can be done
with few analytic calculations, which are fortunately rather simple.

Indeed, if the U -statistic is non-degenerate, then the limit distribution is Gaussian with
variance given by Theorem 2.2.7 and Theorem 3.3.1. The two theorems come each with an
expression for the asymptotic variance. The two expressions are equivalent. In Theorem 2.2.7,
we can transpose the formula to kernels of p×q submatrices. Therefore, the asymptotic variance
is given by

V =
p2

ρ
c1,0
+

q2

1 − ρ
c0,1, (4.13)

where cr,c = Cov(hi,j, hi′,j′) where i and i′ have r elements in common and j and j′ have c

elements in common. In Theorem 3.3.1, the asymptotic variance is given by the variance of the
first Hoeffding-type projections, that is

V =
p2

ρ
v1,0
+

q2

1 − ρ
v0,1, (4.14)

where v1,0 = V[E[hJpK,JqK ∣ ξ1]] and v0,1 = V[E[hJpK,JqK ∣ η1]]. Remark that

E[h{1,...,p},{1,...,q}h{1,p+1,...,2p−1},{q+1,...,2q}]

= E[E[h{1,...,p},{1,...,q}h{1,p+1,...,2p−1},{q+1,...,2q} ∣ ξ1]]

= E[E[h{1,...,p},{1,...,q} ∣ ξ1]E[h{1,p+1,...,2p−1},{q+1,...,2q} ∣ ξ1]]

= E[E[hJpK,JqK ∣ ξ1]
2
].

(4.15)

This proves that c1,0 = v1,0 and by symmetry, c0,1 = v0,1.

Any of these two formulas can be used to check the degeneracy, which occurs when this
asymptotic variance is equal to 0, i.e. c1,0 = c0,1 = 0 or v1,0 = v0,1 = 0.
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4.3.2. Order of degeneracy

Alhough the application of the non-degenerate theorem is rather straightforward after cal-
culating the asymptotic variance, more work is required in the degenerate case. This includes
finding the order of degeneracy, which gives the rate of convergence and a list of projections to
investigate, and the form of the distribution depending on the principal support graphs.

Although it is possible to find the order of degeneracy and the principal support graphs
analytically, it is usually laborious and time-consuming to explore and compute all the required
projections, especially when the order of degeneracy is high.

Fortunately, the order of degeneracy can be found by simulation. Below, we suggest two
different methods. For the principal support graphs, even if knowing the order of degeneracy
shrinks the pool of projections to explore, we have found no general trick to identify them.

Slope method The most intuitive technique is to obtain V[UN ] for many values of N by
simulation. Indeed, V[UN ] = V

(d)/Nd + o(N−d), so logV[UN ] = −d logN + log(V (d) + o(1)).
Therefore, the slope of the asymptote of the curve representing logV[UN ] versus logN is −d.
However, this comes with a caveat in practice, as the slope is not always precise for small values
of N . One also needs to simulate with different orders of magnitude of N , but simulations are
onerous as N grows larger.

The non-degenerate variance estimator method This method exploits an interesting
property of the estimator V̂N of the non-degenerate asymptotic variance defined in Chapter 3.
For non-degenerate U -statistics, we have NV[UN ]/E[V̂N ] → 1. For degenerate U -statistics, the
following result holds.

Theorem 4.3.1. Let UN be a degenerate U -statistic of order d − 1, 2 ≤ d ≤ p + q − 1. Then, we
have

NV[UN ]

E[V̂N ]
ÐÐÐ→
N→∞

1
d
. (4.16)

This result, the proof of which is given in Appendix 4.E, is rather surprising. Remember
that V̂N is the estimator of the asymptotic variance in the non-degenerate case, therefore we
have V̂N

P
ÐÐÐ→
N→∞

0. Since Nd/2(UN − U∞)
D
Ð→ W , where W is a random variable with finite

variance, we could expect that NV[UN ]/E[V̂N ] goes to infinity instead. However, it turns out
that V̂N also captures the variance terms of degenerate U -statistics, which compensate with the
N normalization instead of Nd.



D
egeneracy

196 Chapter 4. Asymptotic distribution of degenerate U -statistics on bipartite networks

Therefore, this method requires to obtain V[UN ] and E[V̂N ] for growing values of N by
simulation. This method often finds the order of degeneracy d− 1 faster than the slope method.
Even though the computation of V̂N takes O(N) times longer than UN , because d is obtained as
a limit value instead of the slope of an asymptote, it is more precise. The slope method usually
requires to simulate networks with larger values of N than this one.

4.4. Example

In this section, we illustrate the example introduced in Section 4.2.6 and continued in fol-
lowing sections. Let Y be a random matrix such that Yij

i.i.d.
∼ N (0,1). Let h1 and h2 be the

kernel functions defined by h1(Y{1},{1,2}) = Y11Y12 and h2(Y{1,2},{1,2}) = (Y11Y22 +Y12Y21)/2, and
Uh1

N and Uh2
N are the U -statistics associated to these kernels.

In Section 4.2.7, we have shown that Uh1
N is degenerate of order 2 and

N3/2Uh1
N

D
ÐÐÐ→
N→∞

N (0, σ2
1),

where σ2
1 =

4
ρ(1−ρ)2 .

In Section 4.2.8, we have shown that Uh2
N is degenerate of order 3 and we have conjectured

that
N2Uh2 D

ÐÐÐ→
N→∞

W,

whereW is some polynomial function of independent Gaussian variables of degree 2. It is possible
to calculate the variance of W , which is σ2

2 = ρ
−2(1 − ρ)−2V (2,2). However, the calculation of

V (2,2) is tedious because one has to explore the principal support graphs of Uh2
N . A simpler

alternative is to use the Hoeffding-type decomposition of Chapter 3 and use Corollary 3.2.4
stating that

V[Uh2
N ] = ∑

(0,0)<(r,c)≤(2,2)
(
2
r
)

2
(
2
c
)

2
(
mN

r
)
−1
(
nN

c
)
−1
V[pr,ch2].

Since Uh2
N is degenerate of order 3, then V[Uh2

N ] = (
mN

2 )
−1
(

nN

2 )
−1V[p2,2h2] =

4
N4ρ2(1−ρ)2V[h2(Y{1,2},{1,2})] + o(N

−4). Since V[h2(Y{1,2},{1,2})] = E[(Y11Y22 + Y12Y21)
2]/4 =

E[Y 2
11Y

2
22]/2 = 1/2, we have finally the variance of W ,

σ2
2 =

2
ρ2(1 − ρ)2

.

Figures 4.4 and 4.5 present some simulation results. For several values of N , we have simu-
lated K = 500 networks and for each network, we have computed Uh1

N and Uh2
N . We renormalize

them by their respective theoretical asymptotic variance, then we compare their empirical dis-
tribution to the standard Gaussian distribution. As expected, the distribution of N3/2Uh1

N /σ1
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converges to a standard Gaussian distribution. However, the distribution of N2Uh2
N /σ2 seems to

converge to some asymmetric distribution, which is not a Gaussian. It seems to be closer to a
centered Chi-squared distribution of the form W 2−1, where W is a Gaussian standard variable,
although this figure is insufficient to illustrate this convergence. Nevertheless, this form was
expected because we have conjectured that the limit distribution is a polynomial of independent
Gaussians variable of degree 2, which explains the asymmetry.
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Figure 4.4 – Empirical distribution of N3/2Uh1
N /σ1 (solid red), compared to a standard Gaussian

distribution (dashed blue). The empirical distribution has been smoothed using the density
function from the base R stats package.

Remark. This example is basic with a simple i.i.d. model for the network edges, but it captures
well the subtleties of the degeneracy phenomenon. Actually, this example is close to a classic
example for degenerate U -statistics of i.i.d. observations. Consider that (X1,X2, ...) are i.i.d.
variables with E[X1] = 0 and V[X1] = σ

2 and let h be the kernel h0(X1,X2) =X1X2. Then, we
can show that the corresponding U -statistic Uh0

N = (
N
2 )
−1
∑1≤i1<i2≤N h0(Xi1 ,Xi2) is degenerate

and

NUh0
N

D
ÐÐÐ→
N→∞

σ2
(W 2

− 1),

where W is a standard Gaussian variable.
Now, suppose that the elements (X1,X2, ...) are placed in a matrix Y , such that for all N ,
the submatrix consisting of the first N rows and N columns contains the N2 first terms of
(X1,X2, ...). Then, the quantity Uh0

N can be written

Uh0
N = (

N2

2
) ∑
(1,1)≤(i1,j1)≠(i2,j2)≤(N,N)

Yi1j1Yi2j2 .
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Figure 4.5 – Empirical distribution of N2Uh2
N /σ2 (solid red), compared to a standard Gaussian

distribution (dashed blue) and a centered Chi-squared distribution with one degree of freedom
(dashed green). The empirical distribution has been smoothed using the density function from
the base R stats package.

Remarkably, we observe that

Uh1
N = N(

N

2
) ∑

1≤i1≤N
1≤j1≠j2≤N

Yi1j1Yi1j2

and

Uh2
N = (

N

2
)

2
∑

1≤i1≠i2≤N
1≤j1≠j2≤N

Yi1j1Yi2j2 .

are sums of similar terms to the ones in Uh0
N , but on a restricted sample. Therefore, it may seem

surprising that Uh1
N and Uh2

N do not have the same limit distribution.
However, this also shows that, despite being defined as U -statistics of RCE matrices, implicitly,
Uh1

N and Uh2
N are incomplete U -statistics based on Uh0

N , a U -statistic of i.i.d. observations. The
convergence theorem for incomplete U -statistics to a Gaussian variable (Thm. 4.1.1) requires that
the size δN of the subsample considered in the incomplete U -statistics are negligible compared
to the total sample size of the U -statistics, here (N

2

2 ). Since for Uh2
N , we have δh2

N = (
N
2 )

2
≍ (

N2

2 ),
then Theorem 4.1.1 does not apply. However, we have δh1

N = N(
N
2 ) = o ((

N2

2 )), which explains
how Uh1

N can converge to a Gaussian variable, as opposed to Uh0
N and Uh2

N .
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4.5. Application to the row degree homogeneity test

In this section, we apply our methodology to the network statistical test described in Sec-
tion 4.1.1. This time, we assume that Y ∼ P − BEDD(Θ), where Θ = (λ, f, g). Therefore, the
distribution of Y can be defined by

ξi
i.i.d.
∼ U[0,1], ∀i ≥ 1,

ηj
i.i.d.
∼ U[0,1], ∀j ≥ 1,

Yij ∣ ξi, ηj ∼ P(λf(ξi)g(ηj)), ∀i ≥ 1, j ≥ 1.

We would like to perform the test H0 ∶ f ≡ 1 vs. H1 ∶ f /≡ 1 and we use the U -statistic UN with
kernel h = h1 − h2 where

h1(Y{i1,i2},{j1,j2}) =
1
2
(Yi1j1Yi1j2 + Yi2j1Yi2j2),

and
h2(Y{i1,i2},{j1,j2}) =

1
2
(Yi1j1Yi2j2 + Yi2j1Yi1j2).

We have already shown that E[h(Y{1,2},{1,2})] = λ
2(F2 − 1), which is equal to 0 under H0. We

have also proved that UN is degenerate because E[h(Y{1,2},{1,2}) ∣ ξ1] = E[h(Y{1,2},{1,2}) ∣ η1] = 0
under H0.

4.5.1. Definition of the test statistic

Analytic identification of the order of degeneracy Since UN is degenerate of order at
least 1, we check first for graphsG ∈ ∪r+c=2Γr,c and E[h(Y{1,2},{1,2}) ∣H(G)] ≠ 0. In fact, there are
only four graphs in ∪r+c=2Γr,c. Their corresponding conditional expectations E[h(Y{1,2},{1,2}) ∣

H(G)] are calculated in Lemmas 4.F.1 to 4.F.4. Under H0, they become
● E[h(Y{1,2},{1,2}) ∣ ξ1, ξ2] = 0,
● E[h(Y{1,2},{1,2}) ∣ η1, η2] = 0,
● E[h(Y{1,2},{1,2}) ∣ ξ1, η1] = 0,
● E[h(Y{1,2},{1,2}) ∣ ξ1, η1, ζ11] = 0.

Since there are no graph of ∪r+c=2Γr,c such that E[h(Y{1,2},{1,2}) ∣ H(G)] ≠ 0, that means that
UN is degenerate of order at least 2.

Next, we check for graphs G ∈ ∪r+c=3Γr,c and E[h(Y{1,2},{1,2}) ∣ H(G)] ≠ 0. From Lem-
mas 4.F.5 to 4.F.10, we have under H0,

● E[h(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1] = 0,
● E[h(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11] = 0,
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● E[h(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11, ζ21] = 0,
● E[h(Y{1,2},{1,2}) ∣ ξ1, η1, η2] = 0,
● E[h(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11] = 0,
● E[h(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12] = (Y11Y12 +λ

2g(η1)g(η2)−λg(V2)Y11 −λg(V1)Y12)/2 ≠
0.

Therefore, there is one (and only one) graph G satisfying this condition, so we can conclude
that the order of degeneracy of UN is 2.

Identification of the order of degeneracy by simulation Suppose that, instead of the
previous calculations, we apply the two techniques suggested in Section 4.3.2 to identify the
order of degeneracy d − 1 of UN by simulation. Like in Figure 4.1, we have simulated K = 500
networks for several values of N

We have already plotted the logarithm of the empirical variance of UN as a function of logN
in Figure 4.1. The blue dots in Figure 4.6 show the slope of the line between each pair of
consecutive dots of Figure 4.1. Because V[UN ] = V

(d)/Nd + o(N−d), where V (d) is a constant,
the slope should converge to d.

The red dots in Figure 4.6 show the ratio between the empirical mean of V̂N , the estimator
of the non-degenerate asymptotic variance proposed in Chapter 3, and the empirical variance of
UN multiplied by N . According to Theorem 4.3.1, this ratio should converge to d.

10 20 50 100 200 500 1000

1
2

3
4

5

N

d

Figure 4.6 – Identification of the order of degeneracy using simulations. For each value of
N ∈ {2k/2 ∶ 6 ≤ k ≤ 20} = {Nk ∶ 6 ≤ k ≤ 20}, we have simulated 500 networks of size ⌊N/2⌋× ⌊N/2⌋,
following a Poisson-BEDD model with λ = 1, f ≡ 1 and a power-law form for g, i.e. g(η) =

(αg + 1)ηαg , and αg chosen such that G2 = 2. A blue dot at a value Nk gives the value of the
slope (log V̂[UNk

] − log V̂[UNk−1]) / (logNk − logNk−1), where V̂[UNk
] is the empirical variance

of UNk
(see Figure 4.1 for the plot of log V̂[UN ] as a function of logN). A red dot at a value Nk

show Ê[V̂Nk
]/ (NkV̂[UNk

]), where Ê[V̂Nk
] is the empirical mean of V̂Nk

.
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We see that the two sequences of dots converge to 3, confirming the order of degeneracy of
2 found analytically. Both methods are generic and can be implemented with a simple code,
while the analytic calculations are tedious. Because the dots of the two methods display some
variance, it is necessary to explore several values of N to confirm the order of the degeneracy,
but this may still be done quicker than analytic calculations.

Application of the convergence theorem In the analytic identification of the order of
degeneracy, we have found that there is only one graph G ∈ ∪r+c=3Γr,c such that E[h(Y{1,2},{1,2}) ∣

H(G)] ≠ 0. This graph is the graph G such that H(G) = (ξ1, η1, η2, ζ11, ζ12), which means
G = K1,2. Thus, the principal support graphs of UN are the graphs (Ki,j)i∈P1(JmN K),j∈P2(JnN K),
which are all connected. Therefore, we can apply Theorem 4.2.8, implying that

N
3
2UN

D
ÐÐÐ→
N→∞

N (0, σ2
),

where σ2 = V (1,2) = 16
ρ(1−ρ)2 ∣Aut(K1,2)∣

−1E[(pK1,2)2] = 2λ2

ρ(1−ρ)2 , applying Lemma 4.F.11 with
F2 = F3 = F4 = 1 under H0.

The asymptotic variance σ2 can be estimated by Uh2
N , the U -statistic associated to h2. Let

us define the estimator

σ̂2
N ∶=

2Uh2
N

ρ(1 − ρ)2
,

and the test statistic

ZN ∶=
N

3
2UN

σ̂N
.

Since Uh2
N

P
ÐÐÐ→
N→∞

λ2, it follows that σ̂2
N is a consistent estimator for σ2. Therefore, Slutsky’s

theorem yields

ZN
D
ÐÐÐ→
N→∞

N (0,1).

As a result, since E[ZN ] > 0 under H1, we use a unilateral acceptance interval at significance
level α ∈]0,1[, defined by

I(α) ∶= ]∞, q1−α] ,

where for x ∈]0,1[, qx denotes the quantile of order x of a standard Gaussian variable. This
interval satisfies

P(ZN ∈ I(α))ÐÐÐ→
N→∞

1 − α.

Asymptotic behavior of the test statistic under H1 Because UN is degenerate under H0,
its asymptotic behavior differs remarkably under H1. Indeed, under H1, UN is not degenerate,
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so the non-degenerate convergence theorem (Thm. 3.3.1) applies and
√

N

V
(UN − λ

2
(F2 − 1)) D

ÐÐÐ→
N→∞

N (0,1),

where V = 4
ρV [E[h(Y{1,2},{1,2}) ∣ ξ1]] +

4
1−ρV [E[h(Y{1,2},{1,2}) ∣ η1]]. Following equations (4.1)

and (4.2), we obtain

V =
λ4

ρ
(F4 − 4F3 + 8F2 − F

2
2 − 4) + 4λ4

1 − ρ
(F2 − 1)2(G2 − 1). (4.17)

Therefore, replacing UN with ZN , we have

σ̂N

N
√
V
ZN −

√
N

V
λ2
(F2 − 1) D

ÐÐÐ→
N→∞

N (0,1). (4.18)

4.5.2. Simulation study

In this simulation study, we considered that the functions f and g of the BEDD are power-law
functions, i.e. f(ξ) = (αf + 1)ξαf and g(η) = (αg + 1)ηαg , where αf and αg are real non-negative
numbers. αf and αg are directly related to the values Fk = ∫ f(ξ)

kdξ = (αf + 1)k/(kαf + 1)
and Gk = ∫ g(η)

kdη = (αg + 1)k/(kαg + 1). Therefore, this family of BEDD model can be
parameterized by (λ,F2,G2) instead of (λ, f, g).

Asymptotic normality of the test statistic under H0 For N ∈ {2k ∶ 3 ≤ k ≤ 10}, we have
simulated K = 500 networks of size ⌊N/2⌋× ⌊N/2⌋ (ρ = 0.5), F2 = 1 and G2 = 2. The test statistic
ZN is computed for each network. For each N , we observe the empirical distribution of ZN ,
which should become closer to a standard Gaussian distribution as N grows.

Figure 4.7 shows the Q-Q plots of the values of ZN . We observe that for N = 8, which
corresponds to bipartite networks of size 4×4, the distribution has lighter tails than the standard
Gaussian distribution, but this is progressively corrected as N increases.

Power of the test We set a range of values {1+0.2k ∶ 0 ≤ k ≤ 10} for F2. For each value of F2

in this set, for N ∈ {2k ∶ 3 ≤ k ≤ 10}, we have simulated K = 500 networks of size ⌊N/2⌋ × ⌊N/2⌋
(ρ = 0.5), with this value of F2 and with G2 = 2. The test statistic ZN is computed for each
network and we reject the hypothesis H0 if ZN /∈ I(α).

The empirical power of the test, i.e. the rate of rejection, is compared to the asymptotic
power ψN(F2) for each value of F2 and N . Since λ and G2 are fixed in this simulation study, the
distribution of UN only depends on the value chosen for F2, so we may define it as a function
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Figure 4.7 – Q-Q plots for the test statistic ZN under H0 (F2 = 1).

UN(F2) and similarly, we may also write ZN(F2) and V (F2). Note that in the expression of
V (F2) given by (4.17), the terms F3 and F4 only depend on F2.

● For F2 = 1, we are under H0 and the asymptotic power of the test is ψN(1) = α.
● For F2 > 1, we are under H1 and, following (4.18), let the limit variable Z̃N(F2) be such

that for all F2 > 1 and N ≥ 1,

σ

N
√
V (F2)

Z̃N(F2) −

√
N

V (F2)
λ2
(F2 − 1) D= N (0,1).

The asymptotic power is given by the function ψN(F2) = 1 − P(Z̃N(F2) ∈ I(α)), which
translates to

ψN(F2) = 1 −Φ
⎛

⎝

σq1−α

N
√
V (F2)

−

√
N

V (F2)
λ2
(F2 − 1)

⎞

⎠
, (4.19)

where Φ is the cumulative distribution function of a standard Gaussian variable.
We observe that there are two terms in the argument of Φ, which is an increasing function with
Φ(0) = 1/2 and limx→−∞Φ(x) = 0. We recall that Fk = (αf + 1)k/(kαf + 1). Therefore, we have
Fk ≍ F

k−1
2 and it follows from equation (4.17) that V (F2) ≍ F

3
2 . Thus, the first term vanishes

when either F2 →∞ or N →∞. For a set value of N , the second term vanishes like F−1/2
2 . We

conclude that ψN(F2) ÐÐÐ→
F2→∞

1/2 < 1, i.e. in equation (4.19), the fact that F2 moves away from
1 is compensated by the fact that V (F2) also increases. This also implies that when F2 becomes
larger, it is needed to have at least N ≍ F2 to maintain the second term, thus maintaining the
power of this test. In constrast, for a set value of F2, we have ψN(F2)ÐÐÐ→

N→∞
1, which is expected

for a statistical test.

The results of the simulations are given in Figure 4.8 for α = 0.05. We also see that the test
is rather correctly rejected for 5% of the simulated networks at F2 = 1. Overall, the test becomes
more powerful when N grows and the rates become nearly perfect for N ≥ 32, where the test is
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rejected for almost all the networks with F2 ≥ 1.2. We notice that the empirical power is higher
than the theoretical power, especially for small values of N ≤ 32. This may be explained by the
error of approximation of V[UN(F2)] by its asymptotic variance V (F2)/N . For a set value of
N , the theoretical power of the test starts by growing rapidly with F2 but stabilizes and seems
to decrease after a certain point, which is in accordance with our predictions.

1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
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0.
6
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1.
0

F2

P
ow

er

N=8
N=16
N=32
N=64
N=128
N=256

Figure 4.8 – Power of the test H0 ∶ f ≡ 1 vs. H1 ∶ f /≡ 1. The solid lines represent the empirical
power for each value of N . The dashed curves represent the asymptotic power functions ψN(F2)

for these same values of N . The grey dashed line is α = 0.05, which should be the power of the
test at F2 = 1.

Appendix 4.A Proofs for Section 4.2.3

Proof of Proposition 4.2.1. We show that for all F and F ′ such that F ′ ⊂ F , we have that
E[pF (X) ∣ H(F ′)] = 0 by induction on F . First, notice that p∅(X) = E[X] ∈ L∗2(∅) being the
space of constant variables. Next, fix F and suppose that the induction hypothesis is true for
all F ⊂ F , i.e. for all F and F ′ such that F ′ ⊆ F ⊂ F , we have that E[pF (X) ∣H(F ′)] = 0. Now
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we can calculate for all F ′ ⊂ F ,

E[pF
(X) ∣H(F ′)] = E[E[X ∣H(F )] ∣H(F ′)] − ∑

F⊂F
E[pF

(X) ∣H(F ′)]

= E[X ∣H(F ′)] − pF ′
(X) − ∑

F⊂F
F≠F ′

E[pF
(X) ∣H(F ′)]

= ∑

F⊂F ′
E[pF

(X) ∣H(F ′)] − ∑
F⊂F
F≠F ′

E[pF
(X) ∣H(F ′)]

= − ∑

F⊂F
F /⊂F ′

E[pF
(X) ∣H(F ′)]

= − ∑

F⊂F
F /⊂F ′

E[pF
(X) ∣H(F ′ ∩ F )].

By the induction hypothesis, all the terms of this sum are equal to 0, which concludes the proof
by induction.

Appendix 4.B Proofs for Section 4.2.5

Proof of Proposition 4.2.3.

V[Um,n] = ∑
(0,0)<(r,c)≤(p,q)

V[P r,c
m,n]

= ∑
(0,0)<(r,c)≤(p,q)

(
m

p
)
−2
(
n

q
)
−2

∑
i,i′∈Pp(JmK)
j,j′∈Pq(JnK)

∑
G⊆Ki,j,G

′⊆Ki′,j′
(v1(G),v2(G))=(r,c)
(v1(G′),v2(G′))=(r,c)

Cov(pG, pG′
)

= ∑
(0,0)<(r,c)≤(p,q)

(
m

p
)
−1
(
n

q
)
−1
(
m − r

p − r
)(
n − c

q − c
)r!(p

r
)c!(q

c
) ∑

G∈Γr,c

∣Aut(G)∣−1V[pG
]

= ∑
(0,0)<(r,c)≤(p,q)

(
m

r
)
−1
(
n

c
)
−1
r!(p
r
)

2
c!(q
c
)

2
∑

G∈Γr,c

∣Aut(G)∣−1E[(pG
)

2
]

= ∑
(0,0)<(r,c)≤(p,q)

(m − r)!
m!

(n − c)!
n!

V (r,c)

Proof of Lemma 4.2.5. Let G ∈ Γr,c.

V[P̃G
m,n] = (

m

p
)
−2
(
n

q
)
−2

∑
i,i′∈Pp(JmK)
j,j′∈Pq(JnK)

Cov(p̃G
i,j, p̃

G
i′,j′)

= (
m

p
)
−2
(
n

q
)
−2

∑
i,i′∈Pp(JmK)
j,j′∈Pq(JnK)

∑
Φ,Φ′∈Sp×Sq

Cov(pΦGi,j , pΦ′Gi′,j′ )
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where for all (i, j) ∈ Pp(JmK) ×Pq(JnK), Gi,j is any graph of Ki,j which is isomorphic to G.

Now see that if ΦGi,j ≠ Φ′Gi′,j′ , then Cov(pΦGi,j , pΦ′Gi′,j′ ) = 0. Otherwise ΦGi,j = Φ′Gi′,j′ ,
then Cov(pΦGi,j , pΦ′Gi′,j′ ) = V[pG] = E[(pG)2]. So, it follows that

V[P̃G
m,n] = (

m

p
)
−2
(
n

q
)
−2

∑
i,i′∈Pp(JmK)
j,j′∈Pq(JnK)

∑
Φ,Φ′∈Sp×Sq

1(ΦGi,j = Φ′Gi′,j′)E[(pG
)

2
].

Finally, applying Lemma 4.2.6, we have

V[P̃G
m,n] = (

m

p
)
−2
(
n

q
)
−2m!(m − r)!
(m − p)!2

n!(n − c)!
(n − q)!2

∣Aut(G)∣E[(pG
)

2
]

=
(m − r)!
m!

(n − c)!
n!

p!2q!2∣Aut(G)∣E[(pG
)

2
].

Proof of Lemma 4.2.6. First, fix i1, j1,Φ1. Write G1 ∶= Φ1G
1
i1,j1

. We count the number of picks
for i2, j2,Φ2 such that Φ2G

2
i2,j2
= G1.

i2 and j2 must contain the r row nodes and the c column nodes of G1 and Φ2 must place
these nodes in the same order than in G1, or belong to its automorphism group. This happens
for (m−r

p−r
)(

n−c
q−c
) picks for (i2, j2) and for each, there are (p− r)!(q − c)!∣Aut(G)∣ valid picks for Φ2.

This happens for all (mp )(
n
q
) picks of (i1, j1) and p!q! picks of Φ1. Therefore,

∑
i1,i2∈Pp(JmK)
j1,j2∈Pq(JnK)

∑
Φ1,Φ2∈Sp×Sq

1(Φ1G
1
i1,j1 = Φ2G

2
i2,j2) = (

m

p
)(
n

q
)(
m − r

p − r
)(
n − c

q − c
)p!q!(p−r)!(q−c)!∣Aut(G)∣,

which develops to the form given by this lemma.

Appendix 4.C Proofs for Section 4.2.6

Proof of Theorem 4.2.7. Since, d − 1 is the order of degeneracy, we have P r,c
N = 0 for all (r, c)

such that r + c < d. Therefore, we have UN − p
∅ −∑(0,0)≤(r,c)≤(p,q)

r+c=d
P r,c

N = ∑(0,0)≤(r,c)≤(p,q)
r+c>d

P r,c
N . So

V

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Nd/2
⎛
⎜
⎜
⎝

UN − p
∅
− ∑
(0,0)≤(r,c)≤(p,q)

r+c=d

P r,c
N

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Nd
∑

(0,0)≤(r,c)≤(p,q)
r+c>d

V[P r,c
N ]

= Nd
∑

(0,0)≤(r,c)≤(p,q)
r+c>d

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c)
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But for all (r, c), we have (mN−r)!
mN !

(nN−c)!
nN ! = O(N−r−c), therefore

V

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Nd/2
⎛
⎜
⎜
⎝

UN − p
∅
− ∑
(0,0)≤(r,c)≤(p,q)

r+c=d

P r,c
N

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Nd
×O

⎛
⎜
⎜
⎝

∑
(0,0)≤(r,c)≤(p,q)

r+c>d

N−r−c
⎞
⎟
⎟
⎠

= Nd
× o(N−d

)

= o(1).

Finally, this implies that Nd/2(UN −p
∅) = Nd/2

∑(0,0)≤(r,c)≤(p,q)
r+c=d

P r,c
N +oP (1), which proves the

theorem.

Appendix 4.D Proofs for Section 4.2.9

4.D.1 Proof of Theorem 4.2.12

In order to prove Theorem 4.2.12, define S = {(rℓ, cℓ) ∶ 1 ≤ ℓ ≤ L} the set of principal degrees of
h. We may define S0 the set of couples (0,0) < (r0, c0) ≤ (p, q) such that γ(N)−1 = o(m−r0

N n−c0
N ),

for any (r, c) ∈ S. We may also define S+, the set of couples (0,0) < (r+, c+) ≤ (p, q) such that
m−r+

N n−c+
N = o(γ(N)−1), for any (r, c) ∈ S. We need the following lemma.

Lemma 4.D.1. For all (r, c) ∈ S0, for all graphs G such that (v1(G), v2(G)) = (r, c), we have
pG = 0.

Proof. We have

V[UN ] = ∑
(0,0)<(r,c)≤(p,q)

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c)

= ∑
(r,c)∈S0

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c)
+ ∑
(r,c)∈S

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c)

+ ∑
(r,c)∈S+

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c).

By definition, (r, c) ∈ S+, m−r
N n−c

N = o(γ(N)−1) and V[UN ] = γ(N)
−1
∑1≤ℓ≤L αℓV

(rℓ,cℓ) +

o(γ(N)−1). Therefore,

∑
(r,c)∈S0

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c)
=

L

∑
l=1
(γ(N)−1αℓ −

(mN − rℓ)!
mN !

(nN − cℓ)!
nN !

)V (rℓ,cℓ) + o(γ(N)−1
).
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Again, by definition, we have for all 1 ≤ ℓ ≤ L, γ(N) (mN−rℓ)!
mN !

(nN−cℓ)!
nN ! ÐÐÐ→

N→∞
αℓ. Therefore,

the previous equation yields

γ(N) ∑
(r,c)∈S0

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c)
= o(1).

But for all (r, c) ∈ S0, γ(N) (mN−r)!
mN !

(nN−c)!
nN ! ÐÐÐ→

N→∞
∞. Since V (r,c) ≥ 0 for all (0,0) ≤

(r, c) ≤ (p, q), this means that for all (r, c) ∈ S0, we have V (r,c) = 0. Thus, V (r,c) =
p!

(p−r)!
q!

(q−r)! ∑G∈Γr,c
∣Aut(G)∣−1V[pG], this means V[pG] = 0 for all G ∈ Γr,c.

Finally, let G be any graph such that (v1(G), v2(G)) = (r, c). Then there exists a graph
G∗ ∈ Γr,c such that V[pG] = V[pG∗]. We have already shown that V[pG∗] = 0 for all (r, c) ∈ S0,
so adding the fact that E[pG] = 0 for all graphs G ≠ ∅, it means that pG = 0, for all graphs G
such that (v1(G), v2(G)) = (r, c) ∈ S0.

Proof of Theorem 4.2.12.

√
γ(N) [UN − p

∅
−

L

∑
ℓ=1
P rℓ,cℓ

N ] =
√
γ(N)

⎡
⎢
⎢
⎢
⎢
⎣

∑
(r,c)∈S0

P r,c
N + ∑

(r,c)∈S+
P r,c

N

⎤
⎥
⎥
⎥
⎥
⎦

.

By Lemma 4.D.1, P r,c
N = 0 for all (r, c) ∈ S0.

V[
√
γ(N) ∑

(r,c)∈S+
P r,c

N ] = γ(N) ∑
(r,c)∈S+

(m − r)!
m!

(n − c)!
n!

V (r,c)

= o(1).

That means
√
γ(N)(UN − p

∅) =
√
γ(N)∑L

ℓ=1 P
rℓ,cℓ

N + oP (1), which concludes the proof.

4.D.2 Proof of Theorem 4.2.13

Proof. Theorem 4.2.12 states that
√
γ(N)(UN − p

∅) has the same limit as
√
γ(N)∑L

ℓ=1 P
rℓ,cℓ

N .

For all (0,0) < (r, c) ≤ (p, q),

P r,c
N = ∑

G∈Γr,c

1
(p − r)!(q − c)!∣Aut(G)∣

P̃G
N .

So
√
γ(N)

L

∑
ℓ=1
P rℓ,cℓ

N =
L

∑
ℓ=1

√
γ(N)m

−rℓ/2
N n

−cℓ/2
N ∑

G∈Γrℓ,cℓ

m
rℓ/2
N n

cℓ/2
N P̃G

N

(p − rℓ)!(q − cℓ)!∣Aut(G)∣
.
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By definition, γ(N)m−rℓ
N n−cℓ

N ÐÐÐ→
N→∞

αℓ. Therefore, by Lemma 4.2.10,
√
γ(N)∑L

ℓ=1 P
rℓ,cℓ

N

converges in distribution to Z = ∑L
ℓ=1
√
αℓ∑G∈Γrℓ,cℓ

WG, where all WG are independent gaussian

variables with mean 0 and variance (p!)2(q!)2
((p−rℓ)!)2((q−cℓ)!)2∣Aut(G)∣V[p

G].

Finally, it follows that Z is a gaussian variable with mean 0 and variance ∑L
ℓ=1
√
αℓV

(rℓ,cℓ)

where
V (rℓ,cℓ) = ∑

G∈Γrℓ,cℓ

(p!)2(q!)2

((p − rℓ)!)2((q − cℓ)!)2∣Aut(G)∣
V[pG

]

Appendix 4.E Proof of Theorem 4.3.1

In the whole section, UN is a U -statistic on Y , a row-column exchangeable matrix, of kernel
h of size p × q. We remind a few definitions and notations from Chapter 3.

For (0,0) < (r, c) ≤ (p, q), we denote vr,c
h = Cov (hi,j, hi′,j′) where i and i′ have r elements in

common and j and j′ have c elements in common.

For N such that mN ≥ p and nN ≥ q, we denote

S
p,q
N ∶= {(i, j) ∶ i ∈ Pp(JmN K), j ∈ Pq(JnN K)} ,

and for some sets of indices i ∈ Pp(JmN K) and j ∈ Pq(JnN K) such that p ≤ p and q ≤ q,

S
p,q
N,(i,j) ∶= {(i, j) ∈ S

p,q
N ∶ i ⊂ i, j ⊂ j} .

The estimators of the conditional expectations are

µ̂
(i)
N = (

mN − 1
p − 1

)
−1
(
nN

q
)
−1

∑
(i,j)∈Sp,q

N,({i},∅)

hi,j

and
ν̂
(j)
N = (

mN

p
)
−1
(
nN − 1
q − 1

)
−1

∑
(i,j)∈Sp,q

N,(∅,{j})

hi,j.

The expression of the variance estimator is

V̂N =
p2

ρ
v̂1,0

N +
q2

1 − ρ
v̂0,1

N ,

where

v̂1,0
N = (

mN

2
)
−1

∑
1≤i1<i2≤mN

(µ̂
(i1)
N − µ̂

(i2)
N )2

2
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and

v̂0,1
N = (

nN

2
)
−1

∑
1≤j1<j2≤nN

(ν̂
(j1)
N − ν̂

(j2)
N )2

2
.

The proof of Theorem 4.3.1 is not technical, but rather tedious. Therefore, we are proving
three lemmas first.

Lemma 4.E.1. If UN is degenerate of order d − 1, then

V[UN ] =
1
Nd ∑

(0,0)<(r,c)≤(p,q)
r+c=d

r!c!
ρr(1 − ρ)c

(
p

r
)

2
(
q

c
)

2
vr,c
+ o(N−d

).

Proof.

V[UN ] = (
mN

p
)
−2
(
nN

q
)
−2

∑
(i,j)∈Sp,q

N

(i′,j′)∈Sp,q
N

Cov (hi,j, hi′,j′)

= (
mN

p
)
−1
(
nN

q
)
−1

∑
(0,0)<(r,c)≤(p,q)

(
p

r
)(
mN − p

p − r
)(
q

c
)(
nN − q

q − c
)vr,c.

If UN is degenerate of order d − 1, then vr,c = 0 for r + c ≤ d − 1, so

V[UN ] = ∑
(0,0)<(r,c)≤(p,q)

r+c=d

r!c!
mr

Nn
c
N

(
p

r
)

2
(
q

c
)

2
vr,c
+ o(N−r−c

)

=
1
Nd ∑

(0,0)<(r,c)≤(p,q)
r+c=d

r!c!
ρr(1 − ρ)c

(
p

r
)

2
(
q

c
)

2
vr,c
+ o(N−d

).

Lemma 4.E.2. If UN is degenerate of order d − 1, then

V[µ̂(1)N ] =
1

Nd−1 ∑
(1,0)≤(r,c)≤(p,q)

r+c=d

r

p2
r!c!

ρr−1(1 − ρ)c
(
p

r
)

2
(
q

c
)

2
vr,c
+ o(N−d+1

).

and
V[ν̂(1)N ] =

1
Nd−1 ∑

(0,1)≤(r,c)≤(p,q)
r+c=d

c

q2
r!c!

ρr(1 − ρ)c−1(
p

r
)

2
(
q

c
)

2
vr,c
+ o(N−d+1

).

Proof. We only prove this lemma for V[µ̂(1)N ]. The result for V[ν̂(1)N ] can be obtained analogously.

V[µ̂(1)N ] = (
mN − 1
p − 1

)
−2
(
nN

q
)
−2

∑
(i,j)∈Sp,q

N,({1},∅)
(i′,j′)∈Sp,q

N,({1},∅)

Cov (hi,j, hi′,j′)

= (
mN − 1
p − 1

)
−1
(
nN

q
)
−1

∑
(1,0)≤(r,c)≤(p,q)

(
p − 1
r − 1
)(
mN − p

p − r
)(
q

c
)(
nN − q

q − c
)vr,c.
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If UN is degenerate of order d − 1, then vr,c = 0 for r + c ≤ d − 1, so

V[µ̂(1)N ] = (
mN − 1
p − 1

)
−1
(
nN

q
)
−1

∑
(1,0)≤(r,c)≤(p,q)

r+c=d

(
p − 1
r − 1
)(
mN − p

p − r
)(
q

c
)(
nN − q

q − c
)vr,c

+ o(N−d+1
)

=
(p − 1)!
mp−1

N

q!
nq

N

∑
(1,0)≤(r,c)≤(p,q)

r+c=d

(
p − 1
r − 1
)
mp−r

N

(p − r)!
(
q

c
)
nq−c

N

(q − c)!
vr,c
+ o(N−d+1

)

= ∑
(1,0)≤(r,c)≤(p,q)

r+c=d

r

p2
r!c!

mr−1
N nc

N

(
p

r
)

2
(
q

c
)

2
vr,c
+ o(N−d+1

)

=
1

Nd−1 ∑
(1,0)≤(r,c)≤(p,q)

r+c=d

r

p2
r!c!

ρr−1(1 − ρ)c
(
p

r
)

2
(
q

c
)

2
vr,c
+ o(N−d+1

).

Lemma 4.E.3. If UN is degenerate of order d − 1, then

Cov(µ̂(1)N , µ̂
(2)
N ) = o(N

−d+1
).

Proof.

Cov(µ̂(1)N , µ̂
(2)
N ) = (

mN − 1
p − 1

)
−2
(
nN

q
)
−2

∑
(i,j)∈Sp,q

N,({1},∅)
(i′,j′)∈Sp,q

N,({2},∅)

Cov (hi,j, hi′,j′)

= (
mN − 1
p − 1

)
−2
(
nN

q
)
−1

∑
(0,0)<(r,c)≤(p,q)

[(
mN − 2
p − 1

)(
p

r
)(
mN − p − 1
p − r − 1

)

+ (
mN − 2
p − 2

)(
p − 1
r − 1
)(
mN − p

p − r
)](

q

c
)(
nN − q

q − c
)vr,c
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If UN is degenerate of order d − 1, then vr,c = 0 for r + c ≤ d − 1, so

Cov(µ̂(1)N , µ̂
(2)
N ) = (

mN − 1
p − 1

)
−2
(
nN

q
)
−1

∑
(0,0)<(r,c)≤(p,q)

r+c=d

[(
mN − 2
p − 1

)(
p

r
)(
mN − p − 1
p − r − 1

)

+ (
mN − 2
p − 2

)(
p − 1
r − 1
)(
mN − p

p − r
)](

q

c
)(
nN − q

q − c
)vr,c

+ o(N−d
)

=
(p − 1)!2

m2p−2
N

q!
nq

N

∑
(0,0)<(r,c)≤(p,q)

r+c=d

⎡
⎢
⎢
⎢
⎣

mp−1
N mp−r−1

N

(p − 1)!(p − r − 1)!
(
p

r
)

+
mp−2

N mp−r
N

(p − 2)!(p − r)!
(
p − 1
r − 1
)
⎤
⎥
⎥
⎥
⎦
(
q

c
)
nq−c

N

(q − c)!
vr,c
+ o(N−d

)

= ∑
(0,0)<(r,c)≤(p,q)

r+c=d

[
r!(p − r)
mr

Np
(
p

r
)

2
+
(p − 1)(p − 1)!
mr

N(p − r)!
r

p
(
p

r
)]

c!
nc

N

(
q

c
)

2
vr,c
+ o(N−d

)

= ∑
(0,0)<(r,c)≤(p,q)

r+c=d

r!c!
mr

Nn
c
N

(
p

r
)

2
(
q

c
)

2
[
p − r

p
+
r(p − 1)
p2 ] vr,c

+ o(N−d
)

=
1
Nd ∑

(0,0)<(r,c)≤(p,q)
r+c=d

r!c!
ρr(1 − ρ)c

(
p

r
)

2
(
q

c
)

2
[1 − r

p2 ] v
r,c
+ o(N−d

)

= o(N−d+1
)

Proof of Theorem 4.3.1. First, we can rewrite the expression of V[UN ] in Lemma 4.E.1 as follows

V[UN ] =
1
Nd ∑

(0,0)<(r,c)≤(p,q)
r+c=d

ṽr,c
+ o(N−d

), (4.20)

where for (0,0) < (r, c) ≤ (p, q), r + c = d,

ṽr,c
=

r!c!
ρr(1 − ρ)c

(
p

r
)

2
(
q

c
)

2
vr,c.

Second, notice that

E[v̂1,0
N ] = (

mN

2
)
−1

∑
1≤i1<i2≤mN

E
⎡
⎢
⎢
⎢
⎢
⎣

(µ̂
(i1)
N − µ̂

(i2)
N )2

2

⎤
⎥
⎥
⎥
⎥
⎦

= (
mN

2
)
−1

∑
1≤i1<i2≤mN

E
⎡
⎢
⎢
⎢
⎢
⎣

(µ̂
(1)
N )

2 − 2µ̂(1)N µ̂
(2)
N + (µ̂

(2)
N )

2

2

⎤
⎥
⎥
⎥
⎥
⎦

= V[µ̂(1)N ] −Cov(µ̂(1)N , µ̂
(2)
N ).
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Using Lemmas 4.E.2 and 4.E.3, we find

E[v̂1,0
N ] =

1
Nd−1 ∑

(1,0)≤(r,c)≤(p,q)
r+c=d

r

p2
r!c!

ρr−1(1 − ρ)c
(
p

r
)

2
(
q

c
)

2
vr,c
+ o(N−d+1

)

=
1

Nd−1
ρ

p2 ∑
(1,0)≤(r,c)≤(p,q)

r+c=d

rṽr,c
+ o(N−d+1

)

=
1

Nd−1
ρ

p2 ∑
(0,0)≤(r,c)≤(p,q)

r+c=d

rṽr,c
+ o(N−d+1

). (4.21)

Analogously,

E[v̂0,1
N ] =

1
Nd−1

1 − ρ
q2 ∑

(0,0)≤(r,c)≤(p,q)
r+c=d

cṽr,c
+ o(N−d+1

). (4.22)

Therefore, combining (4.21), (4.22) and finally (4.20), we have

E[V̂N ] =
p2

ρ
E[v̂1,0

N ] +
q2

(1 − ρ)
E[v̂0,1

N ]

=
1

Nd−1 ∑
(0,0)<(r,c)≤(p,q)

r+c=d

(r + c)ṽr,c
+ o(N−d+1

)

=
d

Nd−1 ∑
(0,0)<(r,c)≤(p,q)

r+c=d

ṽr,c
+ o(N−d+1

)

= dNV[Uh
N ] + o(N

−d+1
).

Thus, since d ≥ 1, we have proved that

NV[Uh
N ]

E[V̂N ]
ÐÐÐ→
N→∞

1
d
,

which is the targeted result.

Appendix 4.F Proofs for Section 4.5

In this section, we calculate the conditional expectations and the variances of Section 4.5.
Let the distribution of Y be defined by

ξi
i.i.d.
∼ U[0,1], ∀1 ≤ i ≤m,

ηj
i.i.d.
∼ U[0,1], ∀1 ≤ j ≤ n,

Yij ∣ ξi, ηj ∼ P(λf(ξi)g(ηj)), ∀1 ≤ i ≤m,1 ≤ j ≤ n.
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Let UN be the U -statistic with kernel h = h1 − h2 where

h1(Y{i1,i2},{j1,j2}) =
1
2
(Yi1j1Yi1j2 + Yi2j1Yi2j2),

and
h2(Y{i1,i2},{j1,j2}) =

1
2
(Yi1j1Yi2j2 + Yi2j1Yi1j2).

Lemma 4.F.1. We have E[h(Y{1,2},{1,2}) ∣ ξ1, ξ2] =
λ2

2 (f(ξ1) − f(ξ2))
2.

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, ξ2] =
1
2
E[Y11Y12 + Y21Y22 ∣ ξ1, ξ2]

=
1
2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η] ∣ ξ1, ξ2]

=
1
2
E[λ2f(ξ1)

2g(η1)g(η2) + λ
2f(ξ2)

2g(η1)g(η2) ∣ ξ1, ξ2]

=
λ2

2
(f(ξ1)

2
+ f(ξ2)

2
),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, ξ2] =
1
2
E[Y11Y22 + Y12Y21 ∣ ξ1, ξ2]

=
1
2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η] ∣ ξ1, ξ2]

=
1
2
E[2λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, ξ2]

= λ2f(ξ1)f(ξ2).

This proves the result.

Lemma 4.F.2. We have E[h(Y{1,2},{1,2}) ∣ η1, η2] = λ
2(F2 − 1)g(η1)g(η2).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ η1, η2] =
1
2
E[Y11Y12 + Y21Y22 ∣ η1, η2]

=
1
2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η] ∣ η1, η2]

=
1
2
E[λ2f(ξ1)

2g(η1)g(η2) + λ
2f(ξ2)

2g(η1)g(η2) ∣ η1, η2]

= λ2F2g(η1)g(η2),

and

E[h2(Y{1,2},{1,2}) ∣ η1, η2] =
1
2
E[Y11Y22 + Y12Y21 ∣ η1, η2]

=
1
2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η] ∣ η1, η2]

=
1
2
E[2λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ η1, η2]

= λ2g(η1)g(η2).



D
eg

en
er

ac
y

4.F. Proofs for Section 4.5 215

This proves the result.

Lemma 4.F.3. We have E[h(Y{1,2},{1,2}) ∣ ξ1, η1] =
λ2

2 (f(ξ1)
2 − 2f(ξ1) + F2)g(η1).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, η1] =
1
2
E[Y11Y12 + Y21Y22 ∣ ξ1, η1]

=
1
2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η] ∣ ξ1, η1]

=
1
2
E[λ2f(ξ1)

2g(η1)g(η2) + λ
2f(ξ2)

2g(η1)g(η2) ∣ ξ1, η1]

=
λ2

2
(f(ξ1)

2
+ F2)g(η1),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, η1] =
1
2
E[Y11Y22 + Y12Y21 ∣ ξ1, η1]

=
1
2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η] ∣ ξ1, η1]

=
1
2
E[2λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, η1]

= λ2f(ξ1)g(η1).

This proves the result.

Lemma 4.F.4. We have E[h(Y{1,2},{1,2}) ∣ ξ1, η1, ζ11] =
λ
2 (f(ξ1) − 1)Y11 +

λ2

2 (F2 − f(ξ1))g(η1).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, η1, ζ11] =
1
2
E[Y11Y12 + Y21Y22 ∣ ξ1, η1, ζ11]

=
1
2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η, Y11] ∣ ξ1, η1, ζ11]

=
1
2
E[λf(ξ1)g(η2)Y11 + λ

2f(ξ2)
2g(η1)g(η2) ∣ ξ1, η1, ζ11]

=
λ

2
f(ξ1)Y11 +

λ2

2
F2g(η1),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, ξ2, ζ11] =
1
2
E[Y11Y22 + Y12Y21 ∣ ξ1, η1, ζ11]

=
1
2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η, Y11] ∣ ξ1, η1, ζ11]

=
1
2
E[λY11f(ξ2)g(η2) + λ

2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, η1, ζ11]

=
λ

2
Y11 +

λ2

2
f(ξ1)g(η1).

This proves the result.
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Lemma 4.F.5. We have E[h(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1] =
λ2

2 (f(ξ1) − f(ξ2))
2g(η1).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1] =
1
2
E[Y11Y12 + Y21Y22 ∣ ξ1, ξ2, η1]

=
1
2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η] ∣ ξ1, ξ2, η1]

=
1
2
E[λ2f(ξ1)

2g(η1)g(η2) + λ
2f(ξ2)

2g(η1)g(η2) ∣ ξ1, ξ2, η1]

=
λ2

2
(f(ξ1)

2
+ f(ξ2)

2
)g(η1),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1] =
1
2
E[Y11Y22 + Y12Y21 ∣ ξ1, ξ2, η1]

=
1
2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η] ∣ ξ1, ξ2, η1]

=
1
2
E[2λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, ξ2, η1]

= λ2f(ξ1)f(ξ2)g(η1).

This proves the result.

Lemma 4.F.6. We have E[h(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11] =
λ
2 (f(ξ1) − f(ξ2))Y11 +

λ2

2 (f(ξ2) −

f(ξ1))f(ξ2)g(η1).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11] =
1
2
E[Y11Y12 + Y21Y22 ∣ ξ1, ξ2, η1, ζ11]

=
1
2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η, Y11] ∣ ξ1, ξ2, η1, ζ11]

=
1
2
E[λf(ξ1)g(η2)Y11 + λ

2f(ξ2)
2g(η1)g(η2) ∣ ξ1, ξ2, η1, ζ11]

=
λ

2
f(ξ1)Y11 +

λ2

2
f(ξ2)

2g(η1),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11] =
1
2
E[Y11Y22 + Y12Y21 ∣ ξ1, ξ2, η1, ζ11]

=
1
2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η, Y11] ∣ ξ1, ξ2, η1, ζ11]

=
1
2
E[λf(ξ2)g(η2)Y11 + λ

2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, ξ2, η1, ζ11]

=
λ

2
f(ξ2)Y11 +

λ2

2
f(ξ1)f(ξ2)g(η1).

This proves the result.
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Lemma 4.F.7. We have E[h(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11, ζ21] =
λ
2 (f(ξ1) − f(ξ2))(Y11 − Y21).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11, ζ21] =
1
2
E[Y11Y12 + Y21Y22 ∣ ξ1, ξ2, η1, ζ11, ζ21]

=
1
2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η, Y11, Y21] ∣ ξ1, ξ2, η1, ζ11, ζ21]

=
1
2
E[λf(ξ1)g(η2)Y11 + λ

2f(ξ2)g(η2)Y21 ∣ ξ1, ξ2, η1, ζ11, ζ21]

=
λ

2
(f(ξ1)Y11 + f(ξ2)Y21),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11, ζ21] =
1
2
E[Y11Y22 + Y12Y21 ∣ ξ1, ξ2, η1, ζ11, ζ21]

=
1
2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η, Y11, Y21] ∣ ξ1, ξ2, η1, ζ11, ζ21]

=
1
2
E[λf(ξ2)g(η2)Y11 + λf(ξ1)g(η2)Y21 ∣ ξ1, ξ2, η1, ζ11, ζ21]

=
λ

2
(f(ξ2)Y11 + f(ξ1)Y21).

This proves the result.

Lemma 4.F.8. We have E[h(Y{1,2},{1,2}) ∣ ξ1, η1, η2] =
λ2

2 (f(ξ1)
2 − 2f(ξ1) + F2)g(η1)g(η2).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, η1, η2] =
1
2
E[Y11Y12 + Y21Y22 ∣ ξ1, η1, η2]

=
1
2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η] ∣ ξ1, η1, η2]

=
1
2
E[λ2f(ξ1)

2g(η1)g(η2) + λ
2f(ξ2)

2g(η1)g(η2) ∣ ξ1, η1, η2]

=
λ2

2
(f(ξ1)

2
+ F2)g(η1)g(η2),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, η1, η2] =
1
2
E[Y11Y22 + Y12Y21 ∣ ξ1, η1, η2]

=
1
2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η] ∣ ξ1, η1, η2]

=
1
2
E[2λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, η1, η2]

= λ2f(ξ1)g(η1)g(η2).

This proves the result.
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Lemma 4.F.9. We have E[h(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11] =
λ
2 (f(ξ1) − 1)g(η2)Y11 +

λ2

2 (F2 −

f(ξ1))g(η1)g(η2).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11] =
1
2
E[Y11Y12 + Y21Y22 ∣ ξ1, η1, η2, ζ11]

=
1
2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η, Y11] ∣ ξ1, η1, η2, ζ11]

=
1
2
E[λf(ξ1)g(η2)Y11 + λ

2f(ξ2)
2g(η1)g(η2) ∣ ξ1, η1, η2, ζ11]

=
λ

2
f(ξ1)g(η2)Y11 +

λ2

2
F2g(η1)g(η2),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11] =
1
2
E[Y11Y22 + Y12Y21 ∣ ξ1, η1, η2, ζ11]

=
1
2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η, Y11] ∣ ξ1, η1, η2, ζ11]

=
1
2
E[λf(ξ2)g(η2)Y11 + λ

2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, η1, η2, ζ11]

=
λ

2
g(η2)Y11 +

λ2

2
f(ξ1)g(η1)g(η2).

This proves the result.

Lemma 4.F.10. We have E[h(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12] =
1
2Y11Y12 −

λ
2 (g(η2)Y11 +

g(η1)Y12) +
λ2

2 F2g(η1)g(η2).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12] =
1
2
E[Y11Y12 + Y21Y22 ∣ ξ1, η1, η2, ζ11, ζ12]

=
1
2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η, Y11, Y12] ∣ ξ1, η1, η2, ζ11, ζ12]

=
1
2
E[Y11Y12 + λ

2f(ξ2)
2g(η1)g(η2) ∣ ξ1, η1, η2, ζ11, ζ12]

=
1
2
Y11Y12 +

λ2

2
F2g(η1)g(η2),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12] =
1
2
E[Y11Y22 + Y12Y21 ∣ ξ1, η1, η2, ζ11, ζ12]

=
1
2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η, Y11, Y12] ∣ ξ1, η1, η2, ζ11, ζ12]

=
1
2
E[λf(ξ2)g(η2)Y11 + λf(ξ2)g(η1)Y12 ∣ ξ1, η1, η2, ζ11, ζ12]

=
λ

2
(g(η2)Y11 + g(η1)Y12).

This proves the result.
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Lemma 4.F.11. We have E[E[h(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12]
2] = λ2

4 F2 +
λ3

2 (F3 −2F2 +1)G2 +
λ4

4 (F4 − 4F3 + 3F 2
2 )G

2
2.

Proof. We have

E[h(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12]
2

= (
1
2
Y11Y12 −

λ

2
(g(η2)Y11 + g(η1)Y12) +

λ2

2
F2g(η1)g(η2))

2

=
1
4
Y 2

11Y
2

12 +
λ2

4
g(η2)

2Y 2
11 +

λ2

4
g(η1)

2Y 2
12 +

λ2

2
g(η1)g(η2)Y11Y12

+
λ4

4
F 2

2 g(η1)
2g(η2)

2
−
λ

2
g(η2)Y

2
11Y12 −

λ

2
g(η1)Y11Y

2
12

+
λ2

2
F2g(η1)g(η2)Y11Y12 −

λ3

2
F2g(η1)g(η2)

2Y11 −
λ3

2
F2g(η1)

2g(η2)Y12.

Taking the expectation of this random variable and using the row-column exchangeability of Y ,
it becomes

E[E[h(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12]
2
]

=
1
4
E[Y 2

11Y
2

12] +
λ2

2
E[g(η2)

2Y 2
11] +

λ2

2
(F2 + 1)E[g(η1)g(η2)Y11Y12]

+
λ4

4
F 2

2 E[g(η1)
2g(η2)

2
] − λE[g(η2)Y

2
11Y12] − λ

3F2E[g(η1)g(η2)
2Y11].
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We calculate each term of this expression separately, obtaining

1
4
E[Y 2

11Y
2

12] = E[E[Y
2

11Y
2

12 ∣ ξ,η]]

=
1
4
E[(λf(ξ1)g(η1) + λ

2f(ξ1)
2g(η1)

2
)

× (λf(ξ1)g(η2) + λ
2f(ξ1)

2g(η2)
2
)]

=
λ2

4
E[f(ξ1)

2g(η1)g(η2)] +
λ3

2
E[f(ξ1)

3g(η1)
2g(η2)]

+
λ4

4
E[f(ξ1)

4g(η1)
2g(η2)

2
]

=
λ2

4
F2 +

λ3

2
F3G2 +

λ4

4
F4G

2
2,

λ2

2
E[g(η2)

2Y 2
11] =

λ2

2
E[E[g(η2)

2Y 2
11 ∣ ξ,η]]

=
λ2

2
E[g(η2)

2
(λf(ξ1)g(η1) + λ

2f(ξ1)
2g(η1)

2
)]

=
λ3

2
G2 +

λ4

2
F2G

2
2,

λ2

2
(F2 + 1)E[g(η1)g(η2)Y11Y12] =

λ2

2
(F2 + 1)E[E[g(η1)g(η2)Y11Y12 ∣ ξ,η]]

=
λ2

2
(F2 + 1)E[λ2f(ξ1)

2g(η1)
2g(η2)

2
]

=
λ4

2
(F2 + 1)F2G

2
2,

λE[g(η2)Y
2

11Y12] = λE[E[g(η2)Y
2

11Y12 ∣ ξ,η]]

= λE[g(η2)(λf(ξ1)g(η1) + λ
2f(ξ1)

2g(η1)
2
)λf(ξ1)g(η2)]

= λ3F2G2 + λ
4F3G

2
2,

λ3F2E[g(η1)g(η2)
2Y11] = λ

3F2E[E[g(η1)g(η2)
2Y11 ∣ ξ,η]]

= λ3F2E[λf(ξ1)g(η1)
2g(η2)

2
]

= λ4F2G
2
2.

Therefore,

E[E[h(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12]
2
]

=
λ2

4
F2 +

λ3

2
F3G2 +

λ4

4
F4G

2
2 +

λ3

2
G2 +

λ4

2
F2G

2
2

+
λ4

2
(F2 + 1)F2G

2
2 +

λ4

4
F 2

2G
2
2 − λ

3F2G2 − λ
4F3G

2
2 − λ

4F2G
2
2

=
λ2

4
F2 +

λ3

2
(F3 − 2F2 + 1)G2 +

λ4

4
(F4 − 4F3 + 3F 2

2 )G
2
2,

which is the expression given by the lemma.
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The main contribution of this thesis is the conception of a methodology to perform sta-
tistical inference on networks with two main objects, row-column exchangeable matrices and
U -statistics. The three previous chapters of this thesis have shown the progressive evolution of
this methodology. In the first chapter, a CLT has been derived for U -statistics of quadruplet
kernels. The second chapter extends it to kernels of all sizes and proposes a generic estimator for
the asymptotic variance. The third chapter gives the CLT in the degenerate case, when the limit
is Gaussian. The different examples show the broad range of applications of this methodology.

I have identified three main directions for future works. The most direct direction consists
in completing this methodology, especially for degenerate cases. This includes proving the CLT
conjectured for degenerate U -statistics when the principal support graphs are not connected
and deriving generic estimators for the asymptotic variance of degenerate U -statistics when the
limit is Gaussian, similar to the ones in the non-degenerate case. The second direction consists
in improving this methodology by adding new theoretical results. This means investigating
alternatives approaches and comparing their performances with the existing ones. The use of
bootstrap estimators, especially for degenerate U -statistics, is particularly interesting. There

223



P
erspectives

224 Chapter 5. Perspectives

are also other ways to build confidence intervals, for example with concentration inequalities.
Finally, Berry-Esseen theorems could add more guarantees to our asymptotic results. The third
direction consists in extending my work to other models, which may be more suited to real
networks. Notably, two issues with exchangeable models is not only they allow isolated nodes,
which are usually not observed or recorded in ecological networks, but they are also dense, while
observed networks are commonly sparse.

5.1. Completion of the methodology

The methodology proposed in this thesis is complete for non-degenerate U -statistics. For
degenerate U -statistics, the following ideas aim to obtain the remaining building blocks to round
it off. They will be explored in priority to be included in a future article, based on Chapter 4.

5.1.1. Non-Gaussian degenerate limit theorem

Chapters 2 and 3 both establish limit theorems for U -statistics, but they do not solve the
degenerate cases. Chapter 4 partially fills this gap by transposing the theory of generalized
U -statistics of Janson and Nowicki (1991), stating that the limit distribution of U -statistics is
determined by properties of its principal support graphs. More precisely, the limit distribution
is a polynomial function of independent Gaussian variables of degree b, the maximum number
of components in the principal support graphs.

In Janson and Nowicki (1991), proofs for generalized U -statistics are given for the Gaussian
limit (b = 1), the Chi-squared limit (b = 2) and the general case (b ≥ 1). Chapter 3 has proved
the limit theorem for degenerate U -statistics of RCE matrices when b = 1, which corresponds to
the Gaussian limit. The general case (b ≥ 1) has only been conjectured. Since the essential part
of the theory, the Hoeffding-type decomposition, has already been figured out in Chapter 3, it
is expected that this conjecture can be proved with less effort.

5.1.2. Plug-and-play variance estimators for degenerate U-statistics

Chapter 3 suggests a generic estimator of the asymptotic variance of non-degenerate U -
statistics. This estimator can be implemented by a simple algorithm and applies to all non-
degenerate kernels. Remarkably, it does not require any specific analytic calculation, so in
this section, I will be calling it the "plug-and-play" estimator. In the non-degenerate case, the
asymptotic variance can be decomposed in two terms, each is the variance of the expectation



P
er

sp
ec

ti
ve

s

5.2. Improvements to the methodology 225

of the kernel conditionally to one row or one column. There is a hope that, similar to the
non-degenerate case, plug-and-play estimators for the variance can be derived in the degenerate
case.

In degenerate case, the terms to estimate are the variance of higher order projections. For
example, when the degeneracy order is d − 1, all the following terms must be estimated, for
(0,0) < (r, c) ≤ (p, q), r + c = d,

V [ψr,c
(JrK,JcK)h] = V [E[hJpK,JqK ∣ AJrK,JcK]] , (5.1)

where Ai,j = ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i
j∈j
). As a reminder, the estimator for non-degenerate

cases is the empirical variance of the set of estimators of all the conditional expectations
(ψr,c
(i′,j′)h)i′∈Pr(JmN K),j′∈Pc(JnN K), associated to a Hoeffding projection. However, there is one possi-

ble obstacle to extending it to degenerate cases. The estimators of the conditional expectations
are of the form

κ̂
(i′,j′)
N ∶= (

mN − r

p − r
)
−1
(
nN − c

q − c
)
−1

∑
(i,j)∈Sp,q

N,(i′,j′)

hi,j.

This is only an average of O(Np+q−d) terms, instead of O(Np+q) in the non-degenerate
case. Therefore, as the order of degeneracy d − 1 increases, the estimation of the condi-
tional expectations is less precise. Besides, the consistency of the empirical variances of the
(κ̂
(i′,j′)
N )i′∈Pr(JmN K),j′∈Pc(JnN K) has also to be proved, so this requires some calculations.

5.2. Improvements to the methodology

The following ideas might improve the methodology developed in this thesis in two different
ways. First, bootstrap methods can substitute current techniques to estimate the variance
of our U -statistics and approximate their limit distribution. Second, concentration inequalities
and Berry-Esseen theorems give more insights about the distribution of the U -statistics for finite
networks. This may help with providing more precise estimates leading to better guarantees in
the statistical inference process.

5.2.1. Bootstrap methods

Bootstrap variance estimator The most common method for estimating the variance of
U -statistics of i.i.d. observations by bootstrapping. One of the aim of McCullagh (2000) was
to show that no bootstrap scheme can generate a consistent estimate of the variance of the
mean of a row-column exchangeable matrix. Let Y be a RCE matrix of size mN × nN and
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ȲN =
1

mN nN
∑ij Yij . Then,

V[ȲN ] =
v1,0

mN
+
v0,1

nN
+

v0,0

mNnN
,

where v0,0 = Cov(Y11, Y22), v1,0 = Cov(Y11, Y12) and v0,1 = Cov(Y11, Y21). One of the bootstrap
scheme suggested by McCullagh (2000) is defined by the following procedure.

● Draw a random sample (αi)1≤i≤mN
of mN row indices from JmN K with replacement.

● Draw a random sample (βj)1≤j≤nN
of nN row indices from JnN K with replacement.

● The bootstrap matrix is defined by Y b
N = (Yαiβj

)1≤i≤mN ,1≤j≤nN
.

This bootstrap scheme is also called the pigeonhole bootstrap (Owen, 2007). McCullagh (2000)
stated that the variance estimate obtained with this bootstrap scheme has expectation

E[V[Ȳ b
N ]] = (

v1,0

mN
+
v0,1

nN
+

3v0,0

mNnN
)(1 + o(1)).

McCullagh (2000) assumed that v1,0, v0,1 and v0,0 could vary with N , so in general, this
bootstrap scheme is not consistent. However, in our case, v1,0, v0,1 and v0,0 are constant,
so E [V[Ȳ b

N ]] /V[ȲN ]ÐÐÐ→
N→∞

1 and the bootstrap estimator is in fact acceptable.

McCullagh (2000) investigated the mean of RCE matrices but he did not consider U -
statistics. The recent work of Davezies et al. (2021) extended the pigeonhole bootstrap to means
of jointly exchangeable arrays and separately exchangeable arrays, for which they have proved
its asymptotic validity. Means of jointly separately exchangeable arrays share many properties
with U -statistics of RCE matrices (which are sums of π-echangeable arrays, see Sect. 1.6.1), so
there is a reasonable chance that the bootstrap would work for U -statistics of RCE matrices.

Bootstrapping degenerate U-statistics If the validity of a bootstrap scheme was proved
for our U -statistics, then not only we could estimate variances, but we could also be able to
estimate any function of their limit distribution, e.g. quantiles to directly build confidence
intervals. This might be a blessing for the analysis of degenerate U -statistics, because we would
not need to know their limit distribution. Instead of trying to identify the form of the complex
distribution of a degenerate U -statistic, we could, for instance, hope to directly bootstrap the
quantiles of this complex distribution.

However, even if the bootstrap was valid for our U -statistics, some additional work would
be required to be able to capture the degenerate limit distribution with bootstrapping methods.
In fact, a naïve bootstrap for degenerate U -statistics for i.i.d. observations has been known to
fail since Bretagnolle (1983). Without much detail, we give next an intuition about the reason
why a naïve bootstrap does not work in degenerate cases.

Let (X1,X2, ...) be i.i.d. variables with distribution P ∈ P. Let Un be a U -statistic on the
variables (X1, ...,Xn). This U -statistic can be seen as a functional Un(P ) defined on P. For
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simplicity, suppose that E[Un(P )] = 0. Let us define a bootstrap scheme. The bootstrap sample
of size n is denoted (Xb

1, ...,X
b
n) where all the Xb

i are i.i.d. with distribution Pn, such that
Pn ÐÐÐ→

n→∞
P . For example, the classic bootstrap scheme is defined by Pn = ∑

n
i=1 δXi where δXi

is the Dirac measure at Xi. The principle of the bootstrap is that P is unknown. By naïvely
replacing P by Pn, we hope to approximate the distribution of a statistic T (P ) by T (Pn). As
Pn ÐÐÐ→

n→∞
P , we hope that the distribution of T (Pn) converges to the distribution of T (P ).

However, this requires that T (P ) is a continuous functional of P , as we illustrate it now.

First, suppose that Un(P ) is non-degenerate. The CLT for U -statistics states that

√
nUn(P )

D
ÐÐÐ→
n→∞

N (0, V1(P )),

where V1(P ) is the asymptotic variance. In some way, the distribution of
√
nUn(P ) is a contin-

uous function of P , because even if V1(P ) = 0, this result would be still valid where ”N (0,0)” is
the Dirac distribution at 0. Therefore, the bootstrap could work when replacing

√
nUn(P ) by

√
nUn(Pn), in order to approximate N (0, V1(P )).

Now, note that nUn(P ) diverges unless V1(P ) = 0. If V1(P ) = 0, then the degeneracy occurs
and we have

nUn(P )
D
ÐÐÐ→
n→∞

L2(V2(P )),

where L2 is some family of distribution indexed by its variance, and V2(P ) is the asymptotic
variance. Therefore, we see that the distribution of nUn(P ) is not a continuous function of
P . Because of the discontinuous nature of nUn(P ), a slight change in P might imply a com-
pletely different distribution. Therefore, nUn(Pn) does not approximate nUn(P ) when Un(P )

is degenerate, because nUn(Pn) is not degenerate in general.

This issue has been tackled by Arcones and Gine (1992) and Dehling and Mikosch (1994), who
proposed a workaround. Remember the Hoeffding decomposition established in Section 1.5.2,

Un(P ) =
k

∑
c=1
(
k

c
)P c

n(P ),

where for 1 ≤ c ≤ k, P c
n = (

n
c
)
−1
∑i∈Pc(JnK) p

c(Xi) and pc is the Hoeffding projection of order c.
If Un(P ) is degenerate, then nP 1

n(P ) = 0 and nUn(P ) = n∑
k
c=2 (

k
c
)P c

n(P ). Therefore, instead of
using nUn(Pn) as the bootstrap statistic, we may use n(Un(Pn) − P

1
n(Pn)). In this case, the

approximated distribution is n(Un(P ) − P
1
n(P )) = n∑

k
c=2 (

k
c
)P c

n(P ), for which the discontinuity
issue disappears.

Adapting such ideas to RCE matrices with the pigeonhole bootstrap is certainly possible, but
not trivial. Yet, bootstrapping degenerate U -statistics would provide an alternative approach in
my methodology. If we can bootstrap degenerate U -statistics, we only need to identify the order
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of degeneracy d−1 and use the correct bootstrap statistic Nd/2(UN −∑r+c≤d P
r,c
N ) to approximate

the limit distribution, instead of identifying this distribution analytically.

5.2.2. Non-asymptotic results

In the proposed methodology, the asymptotic confidence intervals used are derived from limit
theorems of the type

√
Nd/V (θ̂N − θ)

D
ÐÐÐ→
N→∞

W where V is the asymptotic variance and W is a

random variable of variance 1. With an estimator V̂N for V , an asymptotic confidence interval
is

IN(α) =

⎡
⎢
⎢
⎢
⎢
⎣

θ̂N − q1−α/2

√

V̂N

Nd
, θ̂N − qα/2

√

V̂N

Nd

⎤
⎥
⎥
⎥
⎥
⎦

,

where qx denotes the quantile of order x of W . We have

P(θ ∈ IN(α))ÐÐÐ→
N→∞

1 − α.

However, for a finite value of N , we have no guarantee on accuracy of IN(α), e.g. we do not
know P(θ ∈ IN(α)).

Concentration inequalities give bounds on the deviation of a random variable from its mean.
For an estimator θ̂N of θ, they are results of the type

P(∣θ̂N − θ∣ ≥ t) ≤ ϕ(t,N),

where ϕ is some function with values in [0,1]. This inequality is valid for all values of N .
Suppose that for some N ≥ 1 and α ∈]0,1[, there is a value tα,N such that ϕ(tα,N ,N) ≥ α. In
this case, the interval

JN(α) = [θ̂N − tα,N , θ̂N + tα,N ]

is such that
P(θ ∈ JN(α)) ≥ 1 − α.

This type of intervals can be used instead of the asymptotic confidence intervals used in my
methodology.

However, there are several potential caveats to this approach. First, although the guarantees
of JN(α) are clearer than the guarantees of IN(α), it does not necessarily mean that P(θ ∈
JN(α)) is closer to 1−α than P(θ ∈ IN(α)) is. In fact, we can only conclude when JN(α) ⊂ IN(α),
because in this case, we have 1 − α ≤ P(θ ∈ JN(α)) ≤ P(θ ∈ IN(α)). Second, finding the value
tα,N to build JN(α) might not be obvious. Most of the time, it can only be estimated with an
estimator t̂α,N . Replacing tα,N with t̂α,N to obtain the interval ĴN(α) usually introduces an
asymptotic approximation. Therefore, P(θ ∈ ĴN(α)) is only asymptotically bounded. For this
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reason, in practice, intervals built from concentration inequalities may be decent alternatives to
the asymptotic confidence intervals used in my methodology, but contrarily to what one might
hope, they do not always have non-asymptotic guarantees.

To illustrate this, one simple useful concentration inequality is Chebyshev’s inequality. If θ̂N

is unbiased, then we have

P(∣θ̂N − θ∣ ≥ t) ≤
V[θ̂N ]

t2
.

In this case, V[θ̂N ] must be estimated. I have investigated the use of this inequality to build
confidence intervals, but I have found that such confidence intervals are usually less conservative
than the ones currently used in my methodology.

Because θ̂N is made of U -statistics, one hopes to be able to derive Bernstein-type and
Hoeffding-type inequalities. These inequality exploit the sum structure of random variables
such as U -statistics. For U -statistics of i.i.d. observations with bounded kernels h of size k, Ho-
effding (1963) has proved these two inequalities

P(∣UN −U∞∣ ≥ t) ≤ exp(−2⌊N/k⌋t2

(b − a)2
) ,

P(∣UN −U∞∣ ≥ t) ≤ exp(− ⌊N/k⌋t2

2σ2 + 2
3(b − a)t

) ,

where σ = V[h(X1, ...,Xk)] and a ≤ h(X1, ...,Xk) ≤ b. In future works, it might be possible to
generalize these inequalities to U -statistics of RCE matrices. However, both inequalities require
the kernel to be bounded, which is a strong restriction, unfit to some applications.

5.2.3. Berry-Esseen theorems

When a sum of random variables converges weakly to a standard Gaussian variable, a Berry-
Esseen theorem gives a bound to the approximation error between the distribution of the sum
and the Gaussian limit. For a given limit theorem, several Berry-Esseen bounds might exist in
the literature because most of the time, the form of Berry-Esseen bounds heavily depends on the
moments of the random variables. This is especially true for U -statistics of i.i.d. observations,
for which the successive works of Grams and Serfling (1973), Bickel (1974), Chan and Wierman
(1977) and Callaert and Janssen (1978) explored the assumptions on the moments of the random
variables to find the sharpest bound. As an example, I am giving the typical form of a Berry-
Esseen result for sums of i.i.d. variables. Let X1, ...,Xn be i.i.d. random variables with moments
E[X1] = 0, E[X2

1 ] = σ
2 and E[∣X1∣

3] = β3. Let Sn = (σ
√
n)−1

∑
n
i=1Xi. Then, we have

sup
x
∣P(Sn ≤ x) −Φ(x)∣ ≤ Cβ3

σ3√n
, (5.2)
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where Φ is the cumulative distribution function of a standard Gaussian variable and C is a
constant.

Similar results have been established for U -statistics of jointly exchangeable arrays by van
Zwet (1984) and Friedrich (1989). Recently, many additional Berry-Esseen bounds have been
found with proofs revolving around the application of Stein’s method (Zhang, 2022; Austern and
Orbanz, 2022). Stein’s method also allows to identify Berry-Esseen bounds for non-Gaussian
limits (Chatterjee and Shao, 2011; Shao and Zhang, 2019; Han and Kato, 2022), although I
have not found any for degenerate U -statistics. I have not conducted a thorough literature
review on Berry-Esseen bounds, so applicable results might already exist for our U -statistics.
However, even though a Berry-Esseen theorem may indicate how quickly a U -statistic converges
to its limiting distribution, it is hard to exploit the bound in our framework. The first potential
difficulty is the calculation of the constants in the bound, which are not often obvious. The
other issue is that the approximation error cannot be directly used to correct the confidence
intervals built in my methodology. In constrast, one possibility is to use the bound on the
approximation error to build confidence intervals for p-values or for the upper and lower bounds
of the asymptotic confidence intervals used in the methodology.

5.3. Beyond RCE models

The random network models used in my work are only required to be exchangeable and disso-
ciated. The dissociation assumption is not very restrictive, but the exchangeability assumption
is a strong one. Exchangeability is mathematically very convenient to derive the theoretical
results of this thesis. In the introductory chapter, I have explained how exchangeability is a
reasonable assumption for ecological networks. However, it is also legitimate to wonder if ex-
changeable models represent well real-life networks. Without condemning exchangeability, the
following two ideas discuss two potential caveats of exchangeable models while providing guid-
ance for future works to adapt my methodology to other models, which are better at representing
ecological networks.

5.3.1. Missing species

Ecological interaction networks result from the aggregation of individual interactions. This
means that every species in the dataset has been seen interacting at least once. In this respect,
all RCE models share a caveat when it comes to representing real networks because they allow
nodes to be isolated, i.e. rows and columns of the adjacency matrices to be empty. Let us
discuss this for binary networks (the same reasoning can be applied for valued networks).
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For binary networks, we recall the definition of the graphon model, which encompasses all
dissociated RCE models. An adjacency matrix Y of size mN × nN is generated by the model
G(N,w) means

ξi
i.i.d.
∼ U[0,1], ∀1 ≤ i ≤mN ,

ηj
i.i.d.
∼ U[0,1], ∀1 ≤ j ≤ nN ,

Yij ∣ ξi, ηj ∼ B(w(ξi, ηj)), ∀1 ≤ i ≤mN ,1 ≤ j ≤ nN ,

where w ∶ [0,1]2 → [0,1]. For all 1 ≤ i ≤m, the probability of the i-th row to be empty is

P(
nN

∑
j=1

Yij = 0) =∬ P(Yi1 = 0, ..., Yin = 0 ∣ ξi, η1, ..., ηn)dξid(η1, ..., ηn)

=∬

nN

∏
j=1

P(Yij = 0 ∣ ξi, ηj)dξid(η1, ..., ηn)

= ∫ (∫ (1 −w(ξi, η))dη)
nN

dξi.

Since ∫ (1−w(ξi, η))dη > 0 unless w(ξi, η) = 1 for all η ∈ [0,1], we have P(∑nN
j=1 Yij = 0) > 0 unless

w ≡ 1.

An observed network cannot have been generated by a random model allowing isolated nodes.
It is hard to quantify how much the presence of isolated nodes affects the results of the analysis.
I have thought about two approaches to investigate the issue. One could either consider that
the observed adjacency matrix only consists in the non-empty rows and columns of the network
generated by the model, or one could change the models to make them generate only adjacency
matrices with no empty rows or columns.

This second solution is rather difficult to implement. Certainly, in principle, it is easy to
simulate networks following a graphon model conditioned to having no isolated nodes. It suffices
to generate candidate networks from a graphon model until one satisfies this condition. However,
the inclusion of this constraint to the graphon model makes the probability distribution complex
and unlikely to be tractable. The row-column exchangeability property is also lost, which means
that the convergence results on U -statistics of this thesis no longer apply. Later, we will introduce
the graphex models, a class of models solving somes issues.

The first solution is a simpler approach for future works. The observed networks are con-
sidered as subnetworks of the networks generated by the models, but where isolated nodes are
removed. Inversely, we simply need to add these empty rows and columns back to the observed
adjacency matrices before performing statistical inference with the proposed methodology. How-
ever, the tricky question is to determine how many empty rows and columns should be added.
One promising idea is to look into the literature of species richness estimation.
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Richness estimation is one motivation of ecological surveys. The list of species recorded in
the data may only consist in a subset of the actual species present in the area. Many techniques
have been developed to infer the number of missing species in presence-absence or abundance
data. Non-parametric methods based on resampling methods (jackknife, bootstrap) have been
developed (Burnham and Overton, 1978; Heltshe and Forrester, 1983; Smith and van Belle,
1984). However, their variance is an issue and they seem to heavily underestimate or overestimate
the number of missing species. In contrast, Chao (1984) gives an estimator of a lower bound for
the number of missing species in abundance dat. The so-called Chao’s estimator has been found
to be rather statistically robust (Bunge and Fitzpatrick, 1993; Walther and Moore, 2005).

Once the numbers of missing rows and missing columns (here denoted m0 and n0) are es-
timated, is it tempting to use them to correct the networks. One may complete the adjacency
matrix by adding m̂0 empty rows and n̂0 empty columns and perform the usual statistical infer-
ence on the completed matrix. However, since m̂0 and n̂0 are estimates, they may not correspond
to the true numbers of missing rows and columns (m0 and n0). Therefore, this requires that the
potential error of estimation is propagated in my methodology. For example, if confidence inter-
vals are available for m0 and n0, then one might explore how changes in these values affect the
estimation of the quantity of interest, when these different values within the confidence intervals
are used to complete the matrix instead. Alternatively, all these couples of possible values for
(m0, n0) can be considered as different models in a Model Averaging framework (Raftery et al.,
1997; Wasserman, 2000), which accounts for the estimation uncertainty.

5.3.2. Sparse networks

On one hand, we have just seen that ecological interaction networks do not usually feature
isolated nodes. On the other hand, these networks have been found to be sparse, i.e. their
connectance decreases when they have more nodes (Busiello et al., 2017). This seems to be
in contradiction with the exchangeability assumption, which ensures that the connectance re-
mains constant when the network size increases. Many generalizations of RCE models to sparse
networks exist, to which there is a hope that my methodology can be adapted.

Before introducing some models of sparse networks, I would like to emphasize that non-
sparsity does not fatally invalidate our approach. In reality, one driver of sparsity might be
species abundance, which greatly affects the structure of network. Rare species are less likely to
be sampled, therefore, they appear in fewer interactions of a dataset. In observed networks, these
rare species appear to be specialists (Fründ et al., 2016), i.e. they have only few interactions.
Abundant species are always sampled first, but as the sampling effort grows, there comes a
point after which every new species added is a rare species. This might explain the apparent
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sparsity in ecological networks. Although the observed networks are sparser, it is possible that
the complete network, showing all the interactions actually occurring, including missing links,
is a dense network.

Sparse graphons A graphon w can be written w = λw̄ where λ = ∬ w is the density of the
network and ∬ w̄ = 1. When the network dimensions mN and nN increase, it is natural to
replace the constant density by a sequence λ = (λN)N≥1, where λN → 0 when N → ∞. The
sparse graphon model G(N, w̄, λ) can be defined as

ξi
i.i.d.
∼ U[0,1], ∀1 ≤ i ≤mN ,

ηj
i.i.d.
∼ U[0,1], ∀1 ≤ j ≤ nN ,

Yij ∣ ξi, ηj ∼ B(λN w̄(ξi, ηj)), ∀1 ≤ i ≤mN ,1 ≤ j ≤ nN .

This model has been proposed and studied by Bickel et al. (2011), Wolfe and Olhede (2013)
and Klopp et al. (2017) for unipartite networks. Significant works by Bhattacharyya and Bickel
(2015), Levin and Levina (2019), Green and Shalizi (2022) and Lunde and Sarkar (2023) in-
vestigated motif densities, which are usually U -statistics, but for sparse networks, they are
renormalized by λN and estimated by resampling methods instead. Currently, no general the-
ory of U -statistics exist for this family of models. It is expected that λN affects the behavior
of U -statistics. Therefore, either U -statistics should be renormalized by λN to cancel it out, or
one should study the effect of λN on the leading terms of the Hoeffding-type decomposition, but
this provides a basis for future works.

Graphex model Another recent series of models addressing the issue of sparsity has been
developed around discrete exchangeable measures on R2

+ (Herlau et al., 2016; Caron and Fox,
2017; Todeschini et al., 2020). The associated class models has been theoretically studied under
the name of graphex models, Kallenberg exchangeable graphs or graphon processes by Veitch and
Roy (2015) and Borgs et al. (2016). To distinguish them from these new models, we qualify our
exchangeable models as "dense". Instead of using dense exchangeable adjacency matrices, these
models construct graphs from an exchangeable point process on R2

+. Instead of the Aldous-
Hoover representation, exchangeable point processes on R2

+ admit a representation as a function
of uniform random variables and unit rate Poisson point processes (Kallenberg, 2005). Instead
of the graphon model encompassing all the dense exchangeable models, the graphex model
encompasses all the models arising from these exchangeable measures.

In the formalism of Veitch and Roy (2015), a graphex consists in a triple (I, S,W ), where
I ∈ R+ is a non-negative number, S ∶ R+ → R+ is an integrable function and W ∶ R2

+ → [0,1] is a
symmetric function. Sacrificing generality for the sake of clarity, we describe, with the help of
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Figure 5.1, a particular case of the graphex model where I = 0 and S ≡ 0. Let Π be a unit rate
Poisson process on R2

+. Each point sampled Zi is latent and has coordinates (θi, ϑi). The value
θi is equivalent to a label for the point and ϑi is a latent parameter. Each pair of points (Zi, Zj)

is included in the graph as an edge with probability W (ϑi, ϑj). To obtain a finite graph, a value
ν ∈ R+ is set and only the edges with labels θi, θj < ν are kept, alongside with the vertices that
participate in at least one edge.

Figure 5.1 – An illustration of the graph building process of the graphex (0,0,W ). The points
are the sampled from the unit rate Poisson process on R2

+, with coordinates (θi, ϑi) (left). The
green dashed edge is included with probability given by the function W taken on one of the
green squares (right, it is a symmetric function). After all the pairs of points have been explored
the same way, the black edges have been included to the graph. The finite graph is obtained by
setting a value ν, here ν = 4.2. The grey edges have been excluded because they involve at least
a point with θi > ν. Finally, the finite graph consists in the points participating in at least one
(black) edge. Figure taken from Veitch and Roy (2015).

From that perspective, we see that the graphex model explicitly excludes isolated vertices.
Also, Veitch and Roy (2015) proved that the graphex model generates sparse networks in general,
if W is integrable and does not have a compact support. In this case, the graphex model
would solve the questions of both sparsity and isolated vertices. It is interesting to note that
otherwise, if the support of the symmetric function W is compact, then the graphs generated
by the graphex models are dense. In that case, the graphex model actually becomes a graphon
model conditioned to exclude isolated vertices, which was actually what we were looking for
in a previous paragraph. Therefore, the flexibility of the graphex model combined with its
desirable property to exclude isolated vertices indicates that it may be appropriate to represent
real ecological networks.

The graphex model is a sparse network model, with some probabilistic symmetries, although
the exchangeability assumption is weaker than in the graphon model. Some work is required
before using these models to investigate ecological networks. First, only few models of this class
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have been built for binary bipartite graphs (Caron, 2012; Veitch et al., 2017), and not in the
general framework of the graphex model as Veitch and Roy (2015) defined it. Furthermore, I have
found no reference to weighted or valued graphex models. Second, the probability distribution
of the graphex model is not as simple as the one of the graphon model. The adjacency matrix
of a graphex network is not exchangeable in general. Still, the probabilistic symmetries of the
underlying process can be used to investigate the distribution of network statistics. U -statistics
appear to have been only used to count motifs (Caron et al., 2017). The asymptotic behavior
of U -statistics can be investigated through the point process structure (Reitzner and Schulte,
2013) of the network. One can also think about other quantities of interest and maybe other
types of statistics, for which we hope to be able to identify the limit distribution using the
exchangeability property of the graphex model.

In this chapter, a number of ideas have been suggested for further work. They have been
organised in such a way that the former are direct extensions of my work, complementing
or improving my methodology, while the latter are more exploratory. The first ideas can be
developed immediately, while the others are better suited to a future research plan over several
years.
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Cette thèse présente les travaux que j’ai menés pendant trois ans en tant que doctorant au
MIA Paris-Saclay, sous la direction de Stéphane Robin, Sophie Donnet et François Massol. Ce
chapitre résume les différentes contributions scientifiques après avoir présenté le contexte dans
lequel elles s’inscrivent.

6.1. Contexte

Cette thèse porte essentiellement sur le comportement asymptotique des U -statistiques sur
des matrices échangeables ligne-colonne (row column exchangeable, RCE). Ces travaux sont
principalement théoriques, mais ils sont fortements motivés par des applications à l’analyse de
réseaux écologiques. En effet, en écologie, la plupart des études ne se limitent pas à l’analyse
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d’un seul réseau, mais d’une collection de réseaux échantillonnés sous différentes conditions, à
des endroits ou des moments différents. En analysant les réseaux de la collection de manière
conjointe, on espère obtenir des informations sur la variabilité des réseaux dans l’espace, dans le
temps et sur l’influence des perturbation extérieures. Cependant, il existe peu de méthodologie
générale pour étudier cela. Dans la littérature écologique, les méthodes utilisées sont spécifiques
aux données disponibles et à la problématique biologique étudiée. L’objectif de cette thèse est
de proposer une méthode plus générale pour étudier les réseaux écologiques.

Il existe de nombreux types de réseaux en écologie. Les réseaux les plus étudiés sont les
réseaux d’interaction entre espèces. Ces réseaux représentent le plus souvent un seul type d’in-
teraction particulier. Nous avons choisi ici de nous concentrer sur les réseaux bipartites, ayant
deux types de nœuds tels que seuls deux nœuds de types différents peuvent être reliés, comme
les réseaux de pollinisation (Fig. 6.1). Le point de départ de ces travaux a donc été de développer
une méthode de comparaison pour ces réseaux. En comparaison aux réseaux rencontrés dans
d’autres domaines scientifiques, les réseaux écologiques ont des propriétés spécifiques.

Figure 6.1 – Un réseau de pollinisation binaire relie des plantes aux insectes qui les visitent.
Figure tirée de Fontaine (2009).

Tout d’abord, ces réseaux résultent de l’agrégation de données d’interaction individuelles. Se-
lon la manière dont ces données sont agrégées, différents réseaux peuvent être obtenus (Fig. 6.2).
Par exemple, les interactions peuvent être regroupées à des niveaux taxonomiques différents (par
espèce, genre, famille, etc.), sur des périodes différentes (par jour, mois, année, etc.), sur des
zones géographiques différentes (par site d’observation, région, etc.).

La méthode d’échantillonnage des interactions affecte également la topologie des réseaux.
Par exemple, dans les réseaux de pollinisation, un insecte peut être échantillonné comme inter-
agissant avec seulement une espèce de plante, par exemple s’il est capturé à l’aide d’un filet après
une visite. Le même insecte peut également être observé comme ayant visité plusieurs fleurs de
cette même plante, ce qui donne lieu soit à plusieurs interactions, au lieu d’une seule, soit à une
interaction quantifiée. Enfin, cet insecte aurait pu être échantillonné comme ayant interagi avec
différentes plantes, si les interactions sont analysées par le biais du pollen trouvé sur l’insecte.
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Figure 6.2 – La question de l’agrégation des données est récurrente dans les réseaux écologiques.
Haut : un réseau de dispersion de graines. Bas : les données d’interaction ont été divisées par
le type de végétation, ce qui amène à des structures différentes du réseau agrégé. Figure tirée
de Timóteo et al. (2018).

Bien qu’il s’agisse du même individu, les interactions peuvent donc être échantillonnées de diffé-
rentes manières, ce qui conduit à des données différentes. La liste des nœuds au réseau, la liste
des arêtes, ainsi que la valeur des arêtes peuvent être affectées.

Surtout, l’effort d’échantillonnage joue un rôle crucial dans les réseaux d’interaction écolo-
giques. Le réseau reconstruit n’est souvent qu’une fraction du réseau complet, et il est difficile
de savoir quel effort est nécessaire pour avoir la certitude d’avoir suffisamment échantillonné
l’ensemble du réseau. Il existe donc une notion d’incertitude inhérente aux données.

Enfin, en raison de la question de l’échantillonnage ou, plus simplement, parce qu’ils sont
observés dans des lieux ou à des moments différents, les réseaux d’une collection n’impliquent
pas nécessairement les mêmes espèces. Par conséquent, les réseaux peuvent avoir des ensembles
de nœuds différents, potentiellement de tailles différentes.

L’approche que j’ai utilisée pour concevoir une méthodologie a donc été motivée par trois
lignes directrices. Premièrement, la méthode doit non seulement permettre de caractériser un
réseau individuellement, mais surtout d’analyser plusieurs réseaux conjointement. Par exemple,
une telle méthode doit pouvoir être utilisée pour comparer des réseaux. Deuxièmement, elle
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doit prendre en compte les spécificités des réseaux d’interaction écologiques, notamment les
caractéristiques décrites ci-dessus. Enfin, elle doit pouvoir répondre à des questions écologiques.
En effet, pour ce dernier point, il est facile de dire si deux réseaux observés sont identiques, mais
il est plus difficile de savoir dans quelle mesure ils diffèrent, si ces différences sont significatives
et surtout, comment les interpréter d’un point de vue écologique.

La méthodologie élaborée dans cette thèse repose sur deux principaux piliers : les modèles
de graphes aléatoires échangeables et les U -statistiques. Le premier, les modèles de graphes aléa-
toires, permet de considérer que chaque réseau observé est la réalisation d’un certain modèle
probabiliste. Cela permet de capturer la source de variabilité des réseaux qui n’est due qu’au
hasard. L’hypothèse d’échangeabilité est une hypothèse portant sur les espèces présentes dans
un réseau. Les modèles échangeables permettent d’obtenir des propriétés intéressantes pour les
U -statistiques, qui constituent le deuxième pilier de cette méthodologie. Ces dernières forment
une classe de statistiques généralisant le concept de moyenne empirique et seront principalement
utilisées comme estimateurs. Pour développer ma méthodologie, j’ai établi des propriétés théo-
riques pour les objets mathématiques concernés, c’est-à-dire les modèles de graphes aléatoires
échangeables et les U -statistiques sur des matrices générées par ces modèles. Néanmoins, je n’ai
jamais perdu de vue la visée applicative initiale.

6.2. Cadre général

6.2.1. Modèles de réseaux bipartites échangeables

Un réseau est dit aléatoire si le graphe qui le représente est une variable aléatoire. Cela signifie
que les graphes des réseaux observés résultent d’une expérience aléatoire. Un modèle de réseau
(ou de graphe, on utilisera désormais les deux termes de manière équivalente) aléatoire définit
la loi de cette variable aléatoire. Il est parfois plus simple de définir un modèle en définissant la
loi d’une matrice, qui peut être considérée comme la matrice d’adjacence d’un graphe.

Un modèle de réseau bipartite est dit échangeable si la loi de la matrice est invariante par
permutations séparées des lignes et des colonnes. On dit que la matrice d’adjacence est échan-
geable ligne-colonne (row column-exchangeable, RCE). On appellera ces modèles des modèles
RCE.

La forme générale des modèles RCE est donnée par la classe des graphons bipartites colorés.
Un graphon bipartite coloré est une application W ∶ [0,1]2 → Π(E), où Π(E) est l’ensemble des
lois de probabilité sur E. Le modèle associé peut s’écrire de la forme suivante, pour générer la
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matrice d’adjacence Y d’un réseau ayant m nœuds en ligne et n nœuds en colonne :

ξi
i.i.d.
∼ U[0,1], ∀1 ≤ i ≤m,

ηj
i.i.d.
∼ U[0,1], ∀1 ≤ j ≤ n,

Yij ∣ ξi, ηj ∼W(ξi, ηj), ∀1 ≤ i ≤m,1 ≤ j ≤ n.

Dans cette thèse, une sous-classe des graphons colorés va être considérée. Les graphons colorés
étudiés seront de la forme W(⋅, ⋅) = L(w(⋅, ⋅)), où w ∶ [0,1]2 → R et (L(µ))µ∈R est une famille de
lois de probabilité avec un paramètre unique. Les modèles associés sont donc

ξi
i.i.d.
∼ U[0,1], ∀1 ≤ i ≤m,

ηj
i.i.d.
∼ U[0,1], ∀1 ≤ j ≤ n,

Yij ∣ ξi, ηj ∼ L(w(ξi, ηj)), ∀1 ≤ i ≤m,1 ≤ j ≤ n.

Par la suite, la fonction w sera simplement appelée un graphon et on se référera aux modèles
graphons pour désigner cette sous-classe.

Le modèle à blocs latents

Le modèle à blocs latents (latent block model, LBM, Govaert and Nadif, 2003) est un mo-
dèle supposant que les deux ensembles de nœuds des graphes bipartites peuvent être divisés
séparément en plusieurs groupes. La loi de l’interaction entre deux nœuds est déterminée par
les groupes auxquels appartiennent ces nœuds. En général, cette loi est paramétrée par un pa-
ramètre unique dépendant de ces groupes. La forme hiérarchique du LBM est donnée par la
formule

Zi
iid
∼ M(1; α), ∀1 ≤ i ≤m,

Wj
iid
∼ M(1; β), ∀1 ≤ j ≤ n,

Yij ∣ Zi = k,Wj = ℓ ∼ L(πkℓ), ∀1 ≤ i ≤m,1 ≤ j ≤ n,

où α et β sont des vecteurs de probabilités de tailles K1 et K2, les nombres respectifs de groupes
pour les nœuds en ligne et les nœuds en colonne, (L(θ))θ∈Θ est une famille de lois de probabilité
et π ∈MK1,K2(Θ) est une matrice de K1 ×K2 paramètres (Fig. 6.3).

Le LBM peut s’écrire comme un graphon constant par blocs, avec

w(ξi, ηj) =∑
k,ℓ

πkℓ1{s(ξi) = k}1{t(ηj) = ℓ},
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Figure 6.3 – Le modèle à blocs latents (LBM). Gauche : un réseau bipartite et sa matrice
d’adjacence. Milieu : le réseau et la matrice réordonnés selon l’appartenance des nœuds aux
groupes. Droite : un réseau "résumé", représentant la matrice π comme un réseau. Figure tirée
de Brault (2014).

où les fonctions s et t sont constantes par morceaux :

s(ξi) = 1 +
K

∑
k=1

1{ξi >
k

∑
k′=1

αk′} , and t(ηj) = 1 +
L

∑
ℓ=1

1{ηj >
ℓ

∑
ℓ′=1

βℓ′} .

Parfois, pour spécifier la loi L utilisée dans le modèle, on peut écrire L-LBM, par exemple
Bernoulli-LBM ou Poisson-LBM.

Modèle à distributions de degrés attendus bipartite

Le modèle à distributions de degrés attendus bipartite (bipartite expected degree distribu-
tion model, BEDD, Ouadah et al., 2022) utilise deux distributions de degrés, une pour chaque
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g0(η) = g(η) =

ξi, ηj
iid
∼ U[0,1]

Yij ∣ ξi, ηj ∼ B(λf(ξi)g(ηj))

f0(ξ) =

f(ξ) =

Figure 6.4 – Le modèle à distributions de degrés attendus bipartite (BEDD). La figure re-
présente plusieurs matrices d’adjacence (réordonnées) générées par des BEDD binaires avec des
distributions de degrés constantes (f0, g0) ou quelconques (f, g).

ensemble de nœuds (en ligne ou en colonne). Il peut être écrit de la manière suivante

ξ1, ..., ξm
i.i.d.
∼ U[0,1], ∀1 ≤ i ≤m,

η1, ..., ηn
i.i.d.
∼ U[0,1], ∀1 ≤ j ≤ n,

Yij ∣ ξi, ηj ∼ L(λf(ξi)g(ηj)), ∀1 ≤ i ≤m,1 ≤ j ≤ n,

où (L(µ))µ∈R est une famille de lois de probabilité paramétrisée par leur espérance µ, λ ∈ R est
la densité du graphe, f et g sont des fonctions de [0,1]→ R telles que ∫ f = ∫ g = 1.

Avec cette formulation, les distributions de degrés sont caractérisées par les fonctions f et g
(Fig. 6.4). Plus précisément, les fonctions f et g peuvent être vues comme les inverses généralisées
des fonctions de répartition des distributions de degrés renormalisés, puisque E[n−1

∑
n
j=1 Yij ∣

ξi] = λf(ξi) et E[m−1
∑

m
i=1 Yij ∣ ηj] = λg(ηj). Le BEDD est un modèle graphon, où le graphon a

une forme produit w(ξ, η) = λf(ξ)g(η). Parfois, pour spécifier la loi L utilisée dans le modèle,
on peut écrire L-BEDD, par exemple Bernoulli-BEDD or Poisson-BEDD.
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6.2.2. Cadre asymptotique

Un cadre asymptotique définit ce qui se passe lorsque la taille des données disponbles aug-
mente. Deux cadres peuvent être définis en analyse de réseaux. Dans le premier, les nouvelles
données apportent de nouveaux réseaux qui sont considérés comme des expériences supplémen-
taires d’un modèle unique. Dans l’autre, les nouvelles données font grandir le réseau en ajoutant
des nœuds et des arêtes à un réseau unique mais incomplet, supposé être un sous-échantillon du
réseau complet, éventuellement infini, tiré du modèle d’intérêt.

Les données d’interaction des écosystèmes sont collectées par les écologues à des endroits
différents, à des moments différents et dans des conditions différentes. Par conséquent, contrai-
rement à de nombreux autres types de données de réseaux, les réseaux écologiques sont, par
essence, le résultat d’une agrégation de données d’interaction échantillonnées individuellement.
L’échantillonnage des interactions écologiques étant coûteux et la plupart du temps incomplet,
on souhaite utiliser autant de données que possible pour construire un réseau. Malgré cela, les
réseaux obtenus par agrégation sont susceptibles d’être incomplets. L’effort d’échantillonnage
nécessaire pour obtenir un réseau complet n’est pas facile à estimer. Pour ces raisons, il est
moins courant d’utiliser des mesures répétées de réseaux qui peuvent être considérées comme
des réplicats tirés du même modèle. Même si des réplicats sont disponibles, elles sont souvent
agrégées pour obtenir un réseau plus complet, avec plus de nœuds et plus d’arêtes. Il est donc
raisonnable de travailler avec un cadre asymptotique dans lequel la quantité croissante est le
nombre de nœuds d’un réseau unique, plutôt qu’une quantité croissante de réseaux réplicats.

Cette méthode est particulièrement bien adaptée à l’hypothèse d’échangeabilité, puisque
chaque réseau peut être représenté par un modèle unique, indépendamment de sa taille. En
effet, chaque matrice d’adjacence observée peut-être considérée comme une sous-matrice d’une
matrice RCE infinie. Les réseaux peuvent être étudiés dans un espace de modèles. Cela peut
être considéré comme une sorte de plongement (embedding). Faire un plongement d’un réseau
signifie le représenter dans un espace différent, souvent Rd où d > 1. Dans le cadre de cette thèse,
chaque réseau est représenté dans l’espace de tous les modèles de réseaux RCE, éventuellement
restreint à une certaine famille de modèles. Par conséquent, les réseaux peuvent être étudiés
dans l’espace des modèles par l’intermédiaire de leur représentant à l’aide d’outils probabilistes
et statistiques. Cette approche est intéressante pour les données écologiques car, pour comparer
deux écosystèmes, on aime généralement comparer les deux réseaux associés à ces écosystèmes.
Une analyse model-based comparerait les deux modèles ajustés à ces réseaux, c’est-à-dire les
représentants des deux réseaux dans l’espace des modèles. Si l’espace est restreint à une certaine
famille de modèles paramétriques, il est possible de le faire en comparant leurs paramètres.
Étant donné que les graphons caractérisent les modèles de graphes échangeables, ceux-là peuvent
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également être utilisés pour construire une métrique de comparaison.

Dans cette thèse, on considère que les dimensions mN×nN de la matrice d’adjacence observée
croissent, avec mN →∞ et nN →∞. Dans la plupart des résultats, on suppose que les nombres de
lignes et de colonnes restent du même ordre de grandeur, avec N =mN+nN et mN/N → ρ ∈]0,1[,
mais il est en fait facile de généraliser les résultats à d’autres comportements de mN et nN .

L’un des avantages de travailler avec des modèles échangeables et ce cadre asymptotique est
la facilité avec laquelle il est possible d’étudier des réseaux de tailles différentes. Si l’estimation
statistique des paramètres est une manière d’étudier les modèles, de nombreux autres outils
peuvent être utilisés. Comme les modèles sont caractérisés par leurs lois de probabilité, de
nombreuses approches utilisant des outils de la statistique paramétrique et non paramétrique,
de la théorie des probabilités et même de la théorie de l’information peuvent être combinées pour
analyser les réseaux. L’approche développée dans cette thèse consiste à identifier des quantités
d’intérêt pouvant être estimées avec les U -statistiques.

6.2.3. U-statistiques sur des réseaux bipartites

Les U -statistiques sont définies comme la moyenne d’une fonction, appelée noyau, d’un sous-
échantillon des données. Quand les données se présentent comme une matrice d’adjacence bi-
partite de taille m × n, le noyau h ∶Mp,q(R) → R est une fonction d’une sous-matrice de taille
p× q, avec 1 ≤ p ≤m et 1 ≤ q ≤ n. On peut supposer que le noyau vérifie la propriété de symétrie
suivante : pour tout (σ1, σ2) ∈ Sp × Sq,

h(Y(iσ1(1),...,iσ1(p);jσ2(1),...,jσ2(q))
) = h(Y(i1,...,ip;j1,...,jq)),

où Y(i1,...,ip;j1,...,jq) est la sous-matrice de Y de taille p× q composée des lignes et des colonnes de
Y indexées par i1, ..., ip et j1, ..., jq respectivement.

Avec cette hypothèse de symétrie, l’ordre des éléments dans i = {i1, ..., ip} et j = {j1, ..., jq}
n’importe pas et on peut utiliser la notation hi,j ∶= h(Y(i1,...,ip;j1,...,jq)). Alors, la U -statistique
associé est

Um,n = (
m

p
)
−1
(
n

q
)
−1

∑
i∈Pp(JmK)
j∈Pq(JnK)

hi,j. (6.1)

Cette hypothèse sur la symétrie de h peut être faite sans perte de généralité. En effet, si h0 ∶

Mp,q(R)→ R n’est pas une fonction symétrique, alors h ∶Mp,q(R)→ R définie par

h(Y(i1,...,ip;j1,...,jq)) = (p!q!)
−1

∑
(σ1,σ2)∈Sp×Sq

h0
(Y(iσ1(1),...,iσ1(p);jσ2(1),...,jσ2(q))

) (6.2)

possède la propriété de symétrie voulue tout en ayant la même moyenne que h0.
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Les propriétés de Um,n viennent de la structure de dépendance des éléments moyennés. Soit
X(i1,...,ip;j1,...,jq) ∶= h(Y(i1,...,ip;j1,...,jq)) de telle manière que Um,n(Y ) soit la moyenne des premiers
éléments du tableau multidimensionnel infini X. Dans le cadre de cette thèse, Y est une matrice
RCE. Par conséquent, X est un tableau π-échangeable telle que pour toutes permutations σ1 et
σ2 de S∞, on ait

X
D
= (X(σ1(i1),...,σ1(ip);σ2(j1),...,σ2(jq)))1≤i1≠...≠ip≤∞

1≤j1≠...≠jq≤∞
.

Cela signifie aussi que

E[Um,n] = E[X(1,...,p;1,...,q)] = E[hJpK,JqK].

Par conséquent, Um,n est un estimateur non-biaisé de X(1,...,p;1,...,q) = hJpK,JqK. La méthodologie
développée fait usage des U -statistiques pour réaliser des tâches d’inférence statistique sur les
modèles de réseaux RCE. Ainsi, elle ne nécessite pas de modèle paramétrique. Elle s’applique à
toutes les quantités pouvant être estimées par une fonction d’un sous-réseau.

6.2.4. Méthodologie proposée

Soit θ une quantité d’intérêt à estimer dans un réseau observé. Généralement, θ est une
fonction des paramètres d’un modèle de réseau aléatoire. L’objectif est de trouver un estimateur
θ̂N ainsi qu’un intervalle de confiance pour θ. L’idée est d’utiliser des estimateurs qui sont soit des
U -statistiques, soit des fonctions d’U -statistiques, c’est-à-dire de la forme θ̂N = UN ∶= UmN ,nN

ou θ̂N ∶= g(U
h1
N , ..., UhD

N ), où g est une fonction dérivable, (h1, ..., hD) un vecteur de noyaux,
potentiellement de tailles différentes, et (Uh1

N , ..., UhD
N ) les U -statistiques associées à ces noyaux.

Si le modèle de réseau est RCE, on espère pouvoir utiliser des résultats théoriques pour
identifier la loi limite de θ̂N quand N →∞. Ces résultats théoriques sont souvent de la forme

√
γ(N)

v
(θ̂N − θ)

D
ÐÐÐ→
N→∞

Q,

où γ(N) est une certaine fonction connue de N telle que γ(N) → ∞, v est la variance asymp-
totique de

√
γ(N)θ̂N et Q est une loi de probabilité de variance 1. γ(N) et v sont reliés à la

variance de θ̂N par la relation V[θN ] = v/γ(N) + o(γ(N)
−1). Cependant, v doit être en général

estimé à partir des données. Si v̂N est un estimateur consistant de v, alors le théorème de Slutsky
implique

√
γ(N)

v̂N
(θ̂N − θ)

D
ÐÐÐ→
N→∞

Q. (6.3)

Pour x ∈]0,1[, on note qx le quantile d’ordre x de la loi Q, c’est-à-dire si W est une variable
aléatoire de loi Q, alors P(W ≤ qx) = x. Des intervalles de confiance asymptotiques pour θ
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peuvent être construits à partir de (6.3). Par exemple,

IN(α) = [θ̂N − q1−α/2

√
v̂N

γ(N)
, θ̂N − qα/2

√
v̂N

γ(N)
]

est un intervalle de confiance au niveau α pour θ, c’est-à-dire P(θ ∈ IN(α))ÐÐÐ→
N→∞

1 − α.

Avec de tels intervalles de confiance, on est capable d’obtenir des garanties statistiques pour
θ̂N . Par conséquent, on est capable de réaliser la plupart des tâches d’inférence statistique sur
les modèles de réseaux, dont l’estimation de paramètres, le test d’hypothèses et la comparaison
de réseaux.

6.3. Résultats

La liste des ingrédients requis pour appliquer cette méthode à des réseaux observés est
composée de :

1. un modèle de réseau RCE, à partir duquel la quantité d’intérêt peut être identifiée,

2. un estimateur de cette quantité d’intérêt, pouvant être écrit comme une fonction d’U -
statistiques,

3. un résultat de convergence en loi pour cette fonction d’U -statistiques,

4. un estimateur de la variance asymptotique de cette fonction d’U -statistiques,

5. une manière de calculer efficacement les estimateurs de la quantité d’intérêt et de la
variance asymptotique.

La partie théorique de cette thèse s’intéresse principalement à établir des théorèmes limites
pour les fonctions d’U -statistiques et des estimateurs de leur variance asymptotique. À travers
différents exemples illustrant ces résultats théoriques, je vais montrer comment choisir un modèle
de réseau et des estimateurs pertinents, selon le problème étudié. Pour le dernier point, le coût
de calcul de ces estimateurs dépend habituellement du problème. Malgré un coût élevé dans le
cas général, dans plusieurs exemples, je donne quelques techniques pour remédier à ce problème.
Le code source, disponible sur un dépôt en ligne, implémente quelques uns de ces exemples en
utilisant des méthodes de calcul efficaces.

6.3.1. Caractérisation des modèles BEDD

Le premier résultat de cette thèse est légèrement différent du reste. Il ne concerne pas direc-
tement les U -statistiques, mais c’est l’une des motivations principales derrière leur usage dans
ma méthodologie. Ce résultat établit la caractérisation du modèle BEDD par la loi jointe d’un
quadruplet, c’est-à-dire une sous-matrice de taille 2 × 2.
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Dans le modèle BEDD, les fonctions f et g sont identifiables à leurs classes d’équivalences
près, générées par toutes les transformations sur [0,1] conservant la mesure. En outre, il est
possible de poser des contraintes sur les fonctions f et g dans la définition du BEDD de telle
manière à ce qu’il n’y ait qu’une seule fonction éligible au sein de leurs classes d’équivalences
respectives, par exemple, on peut se référer à Yang et al. (2014) pour un argument similaire sur
les graphons.

Le théorème suivant stipule que f et g sont charactérisées de manière unique, à leur classes
d’équivalences près, par des certaines familles (Fk)k≥1 et (Gk)k≥1.

Théorème 2.3.2 (Chp. 2, Le Minh, 2023). Soit Θ = (λ, f, g) des paramètres du BEDD et
Y ∼ BEDD(Θ). La loi de Y est uniquement déterminée par λ, (Fk)k≥1 et (Gk)k≥1, où Fk ∶= ∫ f

k

et Gk ∶= ∫ g
k pour tout k ≥ 1.

De plus, pour prouver la caractérisation du modèle BEDD par un quadruplet, il est suffisant
de montrer que deux ensembles distincts de paramètres (non-équivalents) pour le BEDD mènent
à deux lois nécessairement différentes pour un quadruplet. Avec le théorème précédent, on n’a
besoin que de le prouver pour des λ, (Fk)k≥1 et (Gk)k≥1 distincts. On a prouvé ce résultat pour
une classe de modèles BEDD pour lesquels la loi L vérifie une hypothèse.

Théorème 2.3.4 (Chp. 2, Le Minh, 2023). Supposons que pour la famille de lois L(µ), il existe
une suite de fonctions (Ψk)k≥1 telle que si une variable aléatoire X ∼ L(µ), alors pour tout k ≥ 1,

E[Ψk(X)] = µ
k.

Alors, dans ce cas, pour tout k ∈ N, Fk et Gk sont uniquement déterminés par la loi jointe d’un
quadruplet.

Ce résultat a été la motivation derrière mon usage des U -statistiques : puisqu’un quadruplet
est suffisant pour contenir toute l’information du modèle, alors il y a un espoir que toute quantité
d’intérêt puisse être estimée par une U -statistique moyennant une fonction de quadruplet.

6.3.2. Décompositions de type Hoeffding

Décomposition sur les variables AHK La décomposition de Hoeffding est un outil pratique
pour étudier les U -statistiques de variables i.i.d. Cependant, généraliser la décomposition aux U -
statistiques sur une matrice RCE ne peut se faire directement. Dans le cas i.i.d., la décomposition
de Hoeffding consiste à projeter le noyau h sur des sous-espaces fonctionnels orthogonaux générés
par des fonctions de sous-ensembles des observations (X1,X2, ...). Pour une matrice RCE Y , une
décomposition fondée sur les sous-espaces générés par les fonctions d’éléments de Y pourrait ne
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pas vérifier les conditions d’orthogonalité, parce que ces derniers ne sont pas i.i.d. L’idée clé pour
trouver une décomposition de Hoeffding dans ce cas est d’utiliser la représentation d’Aldous-
Hoover-Kallenberg (AHK) des matrices RCE. Cette représentation permet d’écrire Y , et ainsi
la U -statistique, comme une fonction des variables aléatoires i.i.d. (ξi)i≥1, (ηj)j≥1 et (ζij)i≥1,j≥1.
Soient (ξi)i≥1, (ηj)j≥1 et (ζij)i≥1,j≥1 des familles de variables AHK associées à Y , c’est-à-dire
qu’il existe une fonction ϕ telle que pour tout i ≥ 1, j ≥ 1, on ait

Yij
a.s.
= ϕ(ξi, ηj , ζij). (6.4)

Au lieu de projeter sur les sous-espaces générés par les fonctions d’observations, on peut projeter
sur les sous-espaces générés par les fonctions de variables AHK. Étant donné que les variables
AHK sont i.i.d., l’orthogonalité des sous-espaces peut être obtenue en choisissant des ensembles
judicieux de variables AHK sur lesquelles projeter.

Ensuite, la décomposition de la U -statistique se déduit directement de la décomposition du
noyau. Dans cette thèse, j’ai finalement trouvé deux systèmes de projection distincts pouvant
être qualifiés de décomposition de Hoeffding pour les U -statistiques de matrices RCE.

Première décomposition La première décomposition a été inspirée par le fait que la dé-
composition de Hoeffding dans le cas i.i.d. est une décomposition sur des sous-espaces générés
par des observations, c’est-à-dire sur des ensembles de la forme (Xi). Puisqu’on ne peut pas
directement utiliser les éléments de Y sans enfreindre l’orthogonalité, on utilise les ensembles de
variables AHK Ai,j définis comme suit. Pour tout i ∈ P(JmK) et j ∈ P(JnK), la variable aléatoire
h(Yi,j) est mesurable par l’ensemble de variables AHK

Ai,j ∶= ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i
j∈j
).

Les projections sont finalement définies de la manière suivante. Soient i′ ∈ Pr′(N) et j′ ∈
Pc′(N).

pi′,j′
(hi,j) = E[hi,j ∣ Ai′,j′] − ∑

(0,0)≤(r′,c′)<(r,c)
∑

i′′⊂i′
i′′⊂i′

pi′′,j′′
(hi,j).

Alors, la décomposition est donnée par

hi,j =∑
i′⊆i
i′⊆i

pi′,j′
(hi,j).

Seconde décomposition La seconde décomposition est apparue en adaptant la théorie
des U -statistiques généralisées de Janson and Nowicki (1991) aux matrices RCE. Soit G =
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(V1(G), V2(G),E(G)) un graphe bipartite. On peut définir l’ensemble H(G) des variables AHK
associées à G comme

H(G) = ((ξi)i∈V1(G), (ηj)j∈V2(G), (ζij)(i,j)∈E(G))

et H(G) = σ(H(G)), la tribu engendrée par les variables de H(G). Les projections sont alors
définies de manière similaire que dans le système précédent

pG
(hi,j) = E[hi,j ∣H(G)] − ∑

F⊂G
pF
(hi,j),

et la décomposition de h s’ensuit
hi,j = ∑

G⊆Ki,j

pG
(hi,j).

Lien entre les deux décompositions Les deux décompositions sont bien des décomposi-
tions sur des sous-espaces orthogonaux, mais elles ont des applications différentes. La première
décomposition est une décomposition de Hoeffding minimale, dans le sens où la U -statistique
est décomposée en le nombre de termes le plus petit possible, tout en capturant tous les ordres
de grandeurs de la variance de Um,n. En effet, on montrera que

V[Um,n] = ∑
(0,0)<(r,c)≤(p,q)

(
p

r
)

2
(
q

c
)

2
(
m

r
)
−1
(
n

c
)
−1
V[pJrK,JcK

(hJpK,JqK)], (6.5)

donc pour un certain (r, c) tel que (0,0) < (r, c) ≤ (p, q), la contribution de V[pJrK,JcK(hJpK,JqK)]

dans V[Um,n] est O(m−rn−c).

La seconde décomposition utilise des projections dans plus de sous-espaces que dans la pre-
mière décomposition. En effet, les ensembles utilisés dans la première décomposition peuvent
aussi s’écrire avec le formalisme des graphes bipartites de la seconde, avec Ai,j = H(Ki,j), où
Ki,j = (V1(Ki,j), V2(Ki,j),E(Ki,j)) ∶= (i, j, i × j) est le graphe bipartite complètement connecté
avec les nœuds en ligne i et les nœuds en colonne j. En revanche, la seconde décomposition consi-
dère aussi les espaces générés par H(G) pour tout G ⊆ Ki,j. Certes, elle est bien plus complexe
que la première décomposition, mais elle peut identifier toutes les lois limites des U -statistiques
dégénérées, ce qui n’est pas possible avec la première décomposition.

6.3.3. Théorèmes limites

Les résultats théoriques clefs de mon travail portent sur l’identification de la loi limite des
U -statistiques UN ∶= UmN ,nN

sur des matrices RCE de taille mN × nN quand N → ∞, où
N = mN + nN et mN/N → ρ ∈]0,1[. Tous ces résultats peuvent être étendus au cas multivarié,
c’est-à-dire pour obtenir la convergence jointe d’un vecteur d’U -statistiques via le théorème de
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Cramér-Wold. De plus, si ces U -statistiques ont le même taux de convergence, par exemple
s’ils sont tous non-dégénérés ou dégénérés du même ordre, alors ces résultats peuvent être aussi
étendus aux fonctions de ces U -statistiques, en utilisant la delta méthode.

Noyaux de quadruplets Le premier résultat de convergence s’applique aux U -statistiques
associées à des noyaux fonctions de quadruplets, c’est-à-dire de sous-matrices de taille 2 × 2.

Théorème 2.2.5 (Chp. 2, Le Minh, 2023). Soit Y une matrice RCE. Soit h un noyau, fonction
de quadruplet telle que E[h2

{1,2},{1,2}] < ∞. Soient FN = σ((U
h
k,l, k ≥ mN , l ≥ nN)) et F∞ ∶=

⋂
∞
N=1FN . On note U∞ = E[h{1,2};{1,2} ∣ F∞] et

V =
4
ρ

Cov(h{1,2},{1,2}, h{1,3},{3,4} ∣ F∞) +
4

1 − ρ
Cov(h{1,2},{1,2}, h{3,4},{1,3} ∣ F∞).

Si P(V > 0) > 0, alors
√
N(UN −U∞)

D
ÐÐÐ→
N→∞

W,

où W est une variable aléatoire de fonction caractéristique ϕ(t) = E[exp(−1
2 t

2V )].

Théorème 2.2.7 (Chp. 2, Le Minh, 2023). En plus des hypothèses du Theorème 2.2.5, si Y est
dissociée, alors Uh

∞ et V h sont constants et
√
N(UN −U∞)

D
ÐÐÐ→
N→∞

N (0, V ),

Plus précisément,

1. U∞ = E[h{1,2},{1,2}],

2. V = 4
ρCov(h{1,2},{1,2}, h{1,3},{3,4}) +

4
1−ρCov(h{1,2},{1,2}, h{3,4},{1,3}).

Le premier théorème s’applique à toutes les matrices RCE. Il a été prouvé à l’aide du théorème
de convergence des martingales inverses de Eagleson and Weber (1978) (Thm. 1.5.8). L’hypothèse
P(V > 0) > 0 assure que la U -statistique n’est pas dégénérée. Ce résultat montre que dans le
cas général, où Y n’est pas forcément dissociée, la loi d’une U -statistique converge vers une loi
de mélange de variables gaussiennes. Cette loi étant complexe, ce résultat n’est pas facilement
exploitable. Le second théorème est une conséquence du premier dans le cas où Y est dissociée,
c’est-à-dire que toutes ses sous-matrices ne partageant ni de ligne, ni de colonne en commun sont
indépendantes. Il a été déduit grâce à un argument de type Hewitt-Savage. Pour les applications
statistiques, c’est bien ce dernier théorème qui est exploité.

Noyaux non-dégénérés de taille p×q Même si les théorèmes précédents ont été prouvés pour
des noyaux de taille 2× 2, les preuves peuvent être en fait généralisées aux noyaux de taille p× q
quelconque, au prix de notations et d’une combinatoire plus complexes. Les décompositions de
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Hoeffding donnent des démonstrations plus simples pour ces résultats, même pour des noyaux de
taille p×q. Le théorème suivant est la généralisation du théorème précédent dans le cas dissocié,
démontré avec une décomposition de Hoeffding.

Théorème 3.3.1 (Chp. 3). Soit Y une matrice dissociée. Soit h un noyau de taille p×q tel que
E[h2

JpK,JqK] <∞. Soient U∞ = E[hJpK,JqK] et

V =
p2

ρ
V[p{1},∅(hJpK,JqK)] +

q2

1 − ρ
V[p∅,{1}

(hJpK,JqK)].

Si V > 0, alors
√
N(UN −U∞)

D
ÐÐÐ→
N→∞

N (0, V ).

Remarquons que même si elle a des expressions différentes en apparence dans les deux théo-
rèmes, la variance asymptotique V représente bien la même quantité. Si p = q = 2, alors

V[p{1},∅(hJ2K,J2K)] = V[E[h{1,2},{1,2} ∣ ξ1]] = Cov(h{1,2},{1,2}, h{1,3},{3,4}) (6.6)

et
V[p∅,{1}

(hJ2K,J2K)] = V[E[h{1,2},{1,2} ∣ η1]] = Cov(h{1,2},{1,2}, h{3,4},{1,3}). (6.7)

Noyaux dégénérés de taille p×q Finalement, dans le cas dégénéré, le problème est beaucoup
plus complexe, même si Y est dissociée. Afin de comprendre la dégénérescence, on peut utiliser
l’expression développée de la variance de V[UN ] donnée par l’équation (6.5). Le cas dégénéré
se produit lorsque V , qui aurait été le terme dominant de V[UN ], vaut 0. Dans ce cas, le
terme dominant correspond aux termes V[pJrK,JcK(hJpK,JqK)] non-nuls avec la plus petite valeur de
d = r + c, ayant une contribution en O(N−d). La bonne normalisation pour le théorème limite
n’est alors plus

√
N , mais plutôt Nd/2.

Quant à la loi limite, elle n’est pas forcément gaussienne. Elle peut être identifiée avec la
deuxième décomposition de Hoeffding. Encore une fois, la variance peut être décomposée selon
ce système de projection comme dans (6.5). Soit Γr,c l’ensemble des graphes bipartites G avec
V1(G) = JrK et V2(G) = JcK tels que tout graphe bipartite avec r nœuds de ligne et c nœuds de
colonnes est isomorphe à un et un seul élément de Γr,c. Alors

V[Um,n] = ∑
(0,0)<(r,c)≤(p,q)

(
p

r
)

2
(
q

c
)

2
(
m

r
)
−1
(
n

c
)
−1
r!c! ∑

G∈Γr,c

∣Aut(G)∣−1V[pG
].

La partie dominante est composée de termes de variance positifs correspondants aux projections
caractérisées par les graphes G ∈ ⋃(r,c)∶r+c=d Γr,c, pour un certain d. d est appelé le degré principal
de h et ces graphes G sont appelés les graphes de support principaux. La loi limite de UN dépend
de la forme de ses graphes de support principaux. Le théorème suivant identifie le cas gaussien.
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Théorème 4.2.8 (Chp. 4). Si tous les graphes de support principaux de UN sont connectés,
alors

Nd/2
(UN −U∞)

D
ÐÐÐ→
N→∞

N (0, σ2
),

où

σ2
= ∑
(0,0)<(r,c)≤(p,q)

r+c=d

p!2q!2

(p − r)!2(q − c)!2 ∑
G∈Γr,c

∣Aut(G)∣−1V[pG
].

La démonstration dans les cas non-gaussiens n’est pas donnée dans cette thèse. Cependant,
on peut supposer que, comme dans Janson and Nowicki (1991), le type de loi limite dépend
du plus grand nombre, noté b, de composantes connectées trouvé dans les graphes de support
principaux. Dans Janson and Nowicki (1991), si b = 1, alors la loi limite est gaussienne, si b = 2,
alors c’est une somme de variables suivant des lois du χ2. Pour un b quelconque, ce serait une
fonction polynomiale de variables gaussiennes indépendantes de degré b. Même si ce résultat
reste non-démontré, plusieurs exemples corroborant cette conjecture seront donnés.

6.3.4. Estimateurs de la variance

Dans cette thèse, j’ai utilisé deux approches pour estimer la variance asymptotique des U -
statistiques. Remarquons que, tout comme les théorèmes limites pour les U -statistiques peuvent
être généralisés aux fonctions d’U -statistiques par le biais de la delta méthode, les estimateurs
de la variance asymptotique peuvent l’être aussi.

Premier estimateur de la variance Les variances asymptotiques données par les théorèmes
limites dépendent de la loi de Y , c’est-à-dire du modèle de réseau, et du noyau h. Une expression
analytique peut être développée pour la variance asymptotique. Alors, on espère que toutes les
quantités qui apparaissent dans cette expression analytique peuvent être estimées pour construire
un estimateur consistant de la variance asymptotique. Cette approche marche autant pour les
U -statistiques dégénérées que non-dégénérées, mais elle a deux défauts. D’abord, le calcul ana-
lytique de la variance peut être laborieux, surtout dans les cas dégénérés. Ensuite, il n’y a pas
de technique générale pour estimer les quantités qui apparaissent dans l’expression analytique.
Dans mes exemples, toutes ces quantités peuvent être estimées à l’aide d’autres U -statistiques.
Cependant, cela est peut-être dû à la chance.

Deuxième estimateur de la variance J’ai défini un estimateur générique pour V du
Theorème 3.3.1. Remarquons que le premier terme apparaissant dans l’expression de V est
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V[p{1},∅(hJpK,JqK)] = V[E[hJpK,JqK ∣ ξ1]]. Comme les variables (ξi)i≥1 sont i.i.d., les espérances
conditionnelles E[hi,j ∣ ξi] sont aussi i.i.d. pour tout i ≥ 1 tant que i ∈ i. On note

µ(i) = E[hi,j ∣ ξi]

pour tout (i, j) ∈ Pp(N)×Pq(N) tel que i ∈ i. Par échangeabilité, cette quantité ne dépend pas des
éléments de i (autres que i) et j. Ainsi, l’estimateur sans biais de la variance de V[p{1},∅(hJpK,JqK)]

utilisant mN lignes de Y est

1
mN(mN − 1) ∑

1≤i1<i2≤mN

(µ(i1) − µ(i2))2.

Cependant, les (µ(i))i≥1 ne sont pas connus, donc on doit également les estimer. Cela peut être
fait avec les estimateurs suivants

µ̂
(i)
N ∶= (

mN − 1
p − 1

)
−1
(
nN

q
)
−1

∑
(i,j)∈Pp(N)×Pq(N)

i∈i

hi,j. (6.8)

En remplaçant les espérances conditionnelles par leurs estimateurs dans l’expression de l’esti-
mateur sans biais de la variance, on obtient

v̂1,0
N ∶= (

mN

2
)
−1

∑
1≤i1<i2≤mN

(µ̂
(i1)
N − µ̂

(i2)
N )2

2
.

Par symétrie, on définit pour tout j ≥ 1,

ν̂
(j)
N ∶= (

mN

p
)
−1
(
nN − 1
q − 1

)
−1

∑
(i,j)∈Pp(N)×Pq(N)

j∈j

hi,j. (6.9)

et

v̂0,1
N ∶= (

nN

2
)
−1

∑
1≤j1<j2≤nN

(ν̂
(j1)
N − ν̂

(j2)
N )2

2
.

Alors, le théorème suivant nous permet d’utiliser v̂1,0
N et v̂0,1

N pour construire un estimateur
consistant de V .

Théorème 3.4.4 (Chp. 3). On a v̂1,0
N

P
ÐÐÐ→
N→∞

V[p{1},∅(hJpK,JqK)] et v̂0,1
N

P
ÐÐÐ→
N→∞

V[p∅,{1}(hJpK,JqK)].
Par conséquent,

V̂N ∶=
p2

ρ
v̂1,0

N +
q2

1 − ρ
v̂0,1

N

P
ÐÐÐ→
N→∞

V.

V̂N nous permet d’estimer V de manière consistante et sans faire de calculs analytiques.
Pour cet aspect, il présente quelques similarités avec les méthodes de rééchantillonnage telles
que les méthodes de bootstrap ou de jackknife. Dans mes études de simulation, V̂N est au moins
aussi précis que la variance estimée par la première méthode. Ainsi, cet estimateur fonctionne
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bien pour les cas non-dégénérés. Pour les cas dégénérés, il est en réalité possible de construire de
manière analogue des estimateurs consistants V[pJrK,JcK(hJpK,JqK)] pour tout (0,0) ≤ (r, c) ≤ (p, q),
mais quand r et c deviennent proches de p et de q respectivement, ils sont moins précis. Cela
est dû au fait que le nombre de termes dans l’estimateur du type (6.8) ou (6.9) est la moyenne
de O(mp−r

N nq−c
N ) termes.

6.4. Plan de la thèse

Le chapitre 1 est un chapitre introductif situant avec plus de détails la problématique éco-
logique et les motivations des travaux de cette thèse. Les notions théoriques de base nécessaires
pour la construction de ma méthodologie sont également données. Pour ces raisons, ce chapitre
présente une revue de littérature en écologie, en analyse de réseaux et en mathématiques. Enfin,
les contributions de cette thèse y sont brièvement présentées, comme dans ce résumé.

Le chapitre 2 porte principalement sur les théorèmes limites pour les U -statistiques des
matrices RCE non-dissociées et dissociées, avec des noyaux de quadruplets. Ces résultats sont
obtenus en utilisant des arguments de martingales inverses. Dans le cas non-dissocié, la U -
statistique converge vers un mélange de gaussiennes, qui devient une simple gaussienne dans
le cas dissocié. La caractérisation des modèles BEDD est également étudiée dans ce chapitre.
Les exemples incluent l’estimation de l’hétérogénéité des degrés des nœuds, la comparaison de
réseaux et le comptage des motifs dans les réseaux. Ce chapitre correspond à un article publié
dans le journal ESAIM : Probability & Statistics.

Le chapitre 3 définit une première décomposition de Hoeffding des U -statistiques sur les
matrices RCE dissociées. Cette décomposition est utilisée pour prouver le théorème limite des
U -statistiques, avec des noyaux de taille quelconque. Un estimateur consistant de leur variance
asymptotique est également construit. Les exemples incluent le comptage de motifs dans les
réseaux, l’estimation de la distance entre des graphons et l’estimation de l’hétérogénéité des
degrés des nœuds. Une analyse de données de réseaux politiques illustre la méthode. Ce chapitre
correspond à un article soumis dans une revue de statistique théorique.

Le chapitre 4 traite des U -statistiques dégénérées sur des matrices RCE dissociées. Une
deuxième décomposition de Hoeffding est présentée. En utilisant cette nouvelle décomposition,
un théorème limite est prouvé pour les U -statistiques dégénérées lorsque la limite est gaussienne.
Dans le cas général (limite non-gaussienne), une conjecture est formulée et commentée. Des
exemples de statistiques dégénérées sont donnés, incluant le test de l’hétérogénéité des degrés
des nœuds d’un réseau. Ce chapitre correspond à un travail en cours, destiné à être soumis plus
tard.
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Le chapitre 5 propose des idées pour des travaux futurs, fondées sur les recherches présentées
dans cette thèse. Certaines de ces idées consistent à compléter la méthodologie, en y ajoutant
les éléments qui manquent. D’autres idées visent à améliorer la méthodologie, en étudiant l’er-
reur d’approximation lors de l’utilisation de résultats asymptotiques. Enfin, les dernières idées
concernent l’extension du cadre d’application actuel utilisant des matrices RCE à des modèles
de réseaux mieux adaptés aux réseaux réels, en particulier des modèles de réseaux sparse.
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