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Abstract. We introduce a new multimodal optimization approach called Natural Variational
Annealing (NVA) that combines the strengths of three foundational concepts to simultaneously
search for multiple global and local modes of black-box and/or nonconvex objectives. First, it
implements a simultaneous search by using variational posteriors, such as, mixture of Gaussians.
Second, it applies annealing to slowly trade off exploration for exploitation. Finally, it learns the
search distribution using natural-gradient ascent where updates resemble well-known and easy-to-
implement algorithms. The three concepts come together in NVA giving rise to new algorithms and
also allowing us to incorporate “fitness shaping”, a core concept from evolutionary algorithms. We
assess the quality of search on simulations and compare them to methods using gradient ascent and
evolution strategies. We also provide an application to a real-world inverse problem in planetary
science.
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1 Introduction

Multimodal or multisolution optimization involves finding all global optima of an objective function
¢, as well as high quality local optima. We consider ¢ : R — R to be a smooth and bounded
function, where d is a positive integer and assume that it has a finite number I of global modes
(maxima), denoted by £7,..., &7 that satisfy

{€7],...,&7} = argmax ((&). (P1)
¢eRd

An explicit expression for £ or its gradient may not always be available, that is, the objective can
be a black-box, but we assume that it is possible to evaluate £(€) at arbitrary locations & € R
Many real-world problems can be formulated as multimodal optimization (Li et al., 2016) when
there are benefits obtained by finding multiple modes, as opposed to just one mode. The diversity
of modes can help us improve the decision-making process and also reveal hidden characteristics of
the problem.

Classic optimization methods are not specifically designed for multimodal optimization, in-
cluding those used in machine learning to navigate non-concave landscapes through stochastic
mini-batching (Robbins and Monro, 1951; Duchi et al., 2011; Tieleman and Hinton, 2012; Kingma
and Ba, 2015). These can still be used for multimodal optimization by using multiple restarts (Rin-
nooy Kan and Timmer, 1987; Lee et al., 2011; Regis and Shoemaker, 2013; Custdodio and Madeira,



2015; Larson and Wild, 2018), for example, by restarting with new initial conditions to avoid previ-
ously explored regions, or by running multiple parallel instances that communicate to avoid search
overlaps. Unfortunately, such solutions often rely on ad hoc heuristics which can be disconnected
from principles of exploration-exploitation and also often lack theoretical foundations.

A principled way to explore is through a search distribution in stochastic optimization, for ex-
ample, through the use of a Gibbs distribution (Geman and Geman, 1984) and simulated annealing
to target global modes by slowly decreasing the temperature (Kirkpatrick et al., 1983). However,
Gibbs distribution is often infeasible to compute and sampling is expensive. Cheap alternatives
rely on variational approximations (Staines and Barber, 2012), annealing of which is referred to as
variational annealing (Katahira et al., 2008; Yoshida and West, 2010; Mandt et al., 2016; Huang
et al., 2018; Tao et al., 2019; D’Angelo and Fortuin, 2021a; Sanokowski et al., 2023). However, such
works often focused on Bayesian models and applications to multimodal optimization are rare, if
any.

Finally, evolutionary algorithms are another mechanism to explore (Bick et al., 1997; Hansen
and Ostermeier, 2001; Wierstra et al., 2014; Ollivier et al., 2017). In particular, particle swarms
(Kennedy and Eberhart, 1995; Brits et al., 2007; Liang et al., 2006; Li, 2007; Qu et al., 2012;
Yamanaka and Yoshida, 2021) have been widely tested in multimodal optimization. Evolutionary
algorithms iteratively generate populations of particles to explore the search space. They simulate
processes of natural evolution like mutation and selection. As a result, the particles retain memories
of previously explored regions and use these to explore new regions. State-of-the-art methods
combine many different heuristics, most notably niching techniques, which partition the search
space to maintain exploration diversity (Ahrari et al., 2017; Maree et al., 2018; de Nobel et al.,
2024).

Our goal in this paper is to propose a framework that enables us to combine the strengths
of various approaches discussed above. Specifically we look for three desirable properties: (1)
We want an algorithm that can simultaneously search different regions, for example, by using a
search distribution; (2) We also want to be able to trade off exploration vs exploitation by using
mechanisms like annealing; (3) But, we want the algorithm to be cheap and easy to implement,
similarly to algorithms such as SGD, Adam and Newton’s method, used in machine learning for
single-mode optimization. We aim to propose a new framework that helps us achieve all the above
properties.

Contributions. We introduce a new multimodal optimization approach called Natural Varia-
tional Annealing (NVA) that realizes the three desirable properties by combining the strengths of
three foundational concepts:

1. Variational approrimation to enable simultaneous search for multiple modes. This is achieved
by using a multimodal search distribution gx(£) and aiming for a relaxed objective E,, [¢(£)]
over the variational parameters A. Simultaneous search is made possible by using mixture
distributions (for example, mixture of Gaussians) where each mixing component focuses on
a different region in the search space.

2. Entropy annealing to introduce exploration-exploitation trade-off by optimizing

Lu(A) = Eqy [£(8)] + wH(gn), (1)
where H(gxn) = — [ qa(&)log gx(&€)d€ is the entropy of the search distribution gx. Similarly
to simulated anneahng, larger values of the temperature parameter w > 0 facilitate more

exploration.



3. Natural-gradient ascent method of Khan and Rue (2023) called the Bayesian learning rule to
obtain cheap and easy-to-implement algorithms to optimize (1):

Air1 = At + o F(N) T VAL, (). (2)

Here, A; denotes the natural-parameters of an exponential-family distribution gy, in iteration
t, F'(A:) is the Fisher Information Matrix (FIM), and p; > 0 is a learning rate. For mixture
distributions, we use the variants proposed by Lin et al. (2019a).

While existing methods have combined pairs of these concepts, like variational approximation with
geometry-informed optimization (Wierstra et al., 2014; Ollivier et al., 2017; Lin et al., 2019a; Osawa
et al., 2019; Khan and Rue, 2023) or with entropy annealing (Katahira et al., 2008; Yoshida and
West, 2010; Mandt et al., 2016; Huang et al., 2018; Tao et al., 2019; Sanokowski et al., 2023),
to our knowledge, the three concepts have not previously been used simultaneously. Apart from
combining the strengths of three foundational concepts, an additional advantage of NVA is that it
allows us to incorporate the concept of fitness shaping used in evolutionary algorithms (Wierstra
et al., 2014) and Information-Geometric Optimization (IGO, Ollivier et al., 2017).

We propose variants of NVA with mixture distributions (referred to as NVA-M). Specifically,
we use the variant with Gaussian mixture (referred to as NVA-GM) to identify high-quality local
solutions. We often choose the number of components to be much larger than the expected modes
in the objective, and intentionally let some components get stuck at local solutions. This helps us
to identify multiple good local solutions and understand the properties of the landscape. We show
several such use cases of our method through simulations and a real-world example.

Outline. In Section 2, we present variational optimization with an entropic penalty term as an
approximation of the annealed Gibbs measures. Section 3 describes the natural-gradient ascent
approach. Section 4 discusses how to incorporate annealing, the role of Gaussian mixtures and
the annealing schedule. Section 5 shows incorporation of fitness shaping and present a variant
FS-NVA-GM (fitness-shaped NVA-GM). In Section 6, we present simulation results and compare
them to Stochastic Gradient Ascent (SGA) and Covariance Matrix Adaptation Evolution Strategy
(CMA-ES). Section 7 shows an application to a real-world inverse problem in planetary science.

2 Gibbs measures for multimodal optimization

Assume that function £ : R? — R has I global modes at locations £, ..., &}, with the corresponding
optimization problem (P1). This is a non-convex problem if I > 1. Further assume that ¢ is twice
continuously differentiable and that [ exp(¢(&)/w)d€ < oo, for all w > 0. Traditional optimization
algorithms are not equipped to handle multiple solutions, typically converging to a single mode.
This section connects the variational formulation of the initial optimization problem to Gibbs
measures and explains how Gaussian mixture approximations can be used to capture the properties
of annealed Gibbs measures.

2.1 Gibbs measures

The following probability distribution function defines a Gibbs measure

_exp({(§)/w)
9:(8) = T b (U(€) ) dE




Gibbs measures as the solutions to a variational problem. Due to the strict concavity of
the entropy function (see Proposition A.1 in Appendix A), the optimization problem

argmax E,[¢(€)] + wH(q), (P2)
q€P(R?)

where w > 0 is fixed, is strictly convex and therefore admits a unique solution. The following
proposition, proven in Appendix B, provides the explicit form of this solution.

Proposition 2.1 (Kullback, 1959; Donsker and Varadhan, 1976). The solution of (P2) is given
by the Gibbs measure g,, defined by (3).

This result shows that the entropy term can be considered as a regularizing term. Indeed, when
w = 0, the solutions of the problem are degenerate as given by the probability measures of the form
g = Zle ciOgr, where the coefficients cy, ..., ¢y are non-negative, sum to 1, and d¢ is the Dirac
measure centered at . Therefore, w regulates the trade-off between the term E,[¢(£)], favouring
a degenerate solution, and the entropy term H(q), which has a smoothing effect on the solution.
By analogy with the use of Gibbs measures in statistical physics, the coefficient w is called the
temperature parameter. The variational problem can be viewed as a generalized Bayesian inference
problem (Bissiri et al., 2016; Knoblauch et al., 2022), framed as an optimization problem.

2.2 Convergence of Gibbs measures

Gibbs measures satisfy interesting properties when the temperature decreases to 0. It is important
to note that the mapping w — g, is continuous on (0,+o00) with respect to the total variation
distance (see Proposition C.1 in Appendix C). The limit of g, as w — 0 is well-defined and is given
by the following result, under regularity conditions on /.

Theorem 2.2 (Annealed Gibbs measure). Suppose that £ is twice continuously differentiable and
all the global modes of £ are non-degenerate, meaning that for alli € [I], the Hessian matriz V2£(£F)
is negative definite. Then, we have

I
y det(—720(£%))~1/2
Jo — o ::Zéiéﬁf’ with Vi € [I], ¢ = —3 et VZ(EZ))* 173’
w0 i=1 > =1 det(=V20(&5))~ /

where = denotes weak convergence and d¢ is the Dirac measure centered at §.

This result is similar to the one of Hwang (1980), which applies to Gibbs posteriors (see Ap-
pendix F.2), but in our case, there is no prior distribution. The proof relies on Laplace’s method
and is provided in Appendix D. This result provides a characterization of the weak limit gg, under
the assumption of non-degenerate modes of £. The distribution gg is a mixture of Dirac distribu-
tions located on the global modes of ¢, with specific weights depending on the Hessian of /. We
call go the annealed Gibbs measure.

Furthermore, it is interesting to note that the weights (¢;);c|) of the annealed Dirac mixture
go provide valuable insight on the curvature of the function ¢ at its modes. Specifically, these
weights evaluate the “flatness” of the modes, with larger values corresponding to flatter modes.
More detailed explanations are given in Appendix E.



2.3 Annealed Gibbs measures for multimodal optimization

Theorem 2.2 may seem counterintuitive as we have established that problem (P2) admits an infinite
number of solutions when w = 0, whereas there is a unique solution g, when w > 0. Theorem 2.2
can be explained as the sequence (g,,),, follows a specific, continuous path in terms of total variation
distance when w — 0 (Appendix C, Proposition C.1), eventually reaching the degenerate solution
set. The limit of the solutions (g.,), is unique when w — 0 and corresponds to the annealed Gibbs
measure gg. Thus, we can approximate go as closely as desired (in the sense of weak convergence)
by solving successive versions of (P2) with decreasing w.

In our approach to multimodal optimization, we exploit the relation between Gibbs measures
and the variational problem (P2) to identify the annealed Gibbs measure go. This is not the
first time that Gibbs measures have been employed as a tool to solve optimization problems.
Notably, Gibbs measures are a key concept in simulated annealing (Kirkpatrick et al., 1983; Geman
and Geman, 1984), and they have been used in global optimization as a special case of nascent
probability distributions (Luo, 2018; Zhang and Ghosh, 2023; Serré et al., 2024). However, to our
knowledge, they have not been applied to multimodal optimization. The annealed Gibbs measure
is crucial in multimodal optimization because it is characterized by the locations of all the global
modes, guaranteeing that they are well-represented.

The variational problem can also be viewed as a generalized Bayesian inference problem (Bissiri
et al., 2016), framed as an optimization problem. The connection between the variational formula-
tion and approximate Bayesian inference has been extensively explored by Knoblauch et al. (2022).
Appendix F extends the analogy between Bayesian inference and annealing by giving a Bayesian
interpretation to Gibbs measures, which play a fundamental role in our method.

In the following sections, we propose a strategy to extract the features of gg using Gaussian
mixture approximations. More specifically, we introduce variational annealing as a deterministic
approximation alternative to simulated annealing. In simulated annealing, gg is reached through
samples obtained by approximating the temperature-evolving Gibbs measures with samples simu-
lated using an MCMC procedure. Instead, we propose to consider variational approximations of
the Gibbs measures and follow their behavior over iterations. The variational approach is based on
the choice of a so-called variational family of distributions to approximate the target distribution.
We believe this is more adapted to our multimodal optimization objective as the choice of such a
familiy provides an additional degree of flexibility. In particular, we will later show that Gaussian
mixtures represent an interesting approximating family to handle multimodal optimization as a
multi-task problem, with the hope that each mixture component will take responsibility for one of
the task.

3 Natural variational annealing with mixtures

In the previous section, we demonstrated that solving problem (P2) with w = 0 alone is insufficient
for capturing all the modes of £. This is because many solutions to this problem do not guarantee
that every mode is identified. Inversely, as established by Theorem 2.2, the annealed solution gg
is directly defined by the locations of all global modes of ¢, under the non-degeneracy assumption,
and by their flatness (see Appendix E). The core idea of our method is to extract the key properties
of the annealed solution g¢ described in Theorem 2.2, specifically the locations and the weights of
this Dirac mixture. Therefore, this approach addresses the challenge of finding all global modes of
¢ and identifying the most robust ones.

Our approach uses concepts from the Bayesian Learning Rule framework (Khan and Rue,
2023), which employs natural gradients to solve variational problems, with variational families



contained in the exponential family. Natural gradients allow faster convergence (see Appendix G
for a justification). However, for multimodal optimization, the use of annealing, combined with
mixture distributions, is also necessary.

The initial step in reaching g¢ involves finding a way to approximate the Gibbs measure g, with
a mixture for a fixed w > 0. Its explicit form remains unknown due to the general lack of knowledge
about /. This section focuses on this crucial step. We show how natural gradient ascent can be
employed to approximate g, with a mixture and discuss its practical implementation. Annealing
can then be implemented by defining an annealing schedule (w;);>; modifying the value of w at
each iteration.

3.1 Natural parameterization of mixtures

We adopt the following parameterization for mixtures of exponential family distributions, expressed
as:

K
aa(€) = > mran, (8),
k=1

where 7 = (71,...,7g) are the mixture weights and ¢y, are the components’ density functions of
the form

I, (&) = hi(€) exp ((Ak, Ti(§)) — A(Ak)) - (4)

The exponential family natural parameters are Ay, while T} (€) are their sufficient statistics, and hy
and A are respectively called their base measure and log partition function. Finally, the mixture
parameters are denoted A := (log(m /7k),...,log(Tx—_1/7K), A1,...,AKk). Although mixtures of
exponential family distributions do not belong to the exponential family itself, A can still be consid-
ered as the natural parameters of the mixture ga, viewed as a minimal conditional exponential-family
distribution (MCEF, Lin et al., 2019a). Indeed, a mixture & can be represented hierarchically with
a mixing random variable Z that takes values in [K] such that

Z~ ML), &1 Z~qx,, (5)

where M(1,7) is the multinoulli distribution (multinomial distribution with 1 trial) with proba-
bility vector mw. In this form, A combines the traditional natural parameters of the multinomial
distribution governing Z with the traditional natural parameters of each component in the condi-
tional distribution & | Z = k (see Lin et al., 2019a for further details).
Thus, the restriction of (P2) to mixtures of exponential family distributions can be reformulated
as
A" = axgmae By, [(6)] +wH(an). (P3)

3.2 Natural gradient update rules

Now, we consider solving (P3). For clarity, let us define f,(&§A) = £(€) + wlog(ga(€)) and
L,(A) :=Eg,[fo(& A)]. With these notations, the optimization problem (P3) can also be written

A™Y = argmax Eg, [f, (& A)] = argmax L, (A). (P3b)
A A
Appendix G provides sufficient motivation to consider natural gradients (Amari, 1998), instead

of (vanilla) gradients, for solving this problem. Natural gradients for a mixture of exponential
family distribution are defined by

VALo(A)|a, = F(Ay) ' VALu(A)|a,, (6)



where F(A) := E[Vlogqa(€,Z)Valogqa(€, Z)T] is the Fisher Information Matrix (FIM) of
qa (&, Z), which is non-singular (Lin et al., 2019a).

A common challenge in applying natural gradients is the computation of the inverse FIM,
which is typically required in each iteration. For certain distributions, such as those within the
exponential family, the FIM has a simple closed form. However, in many cases, estimating, storing,
and inverting this matrix can be computationally expensive, especially for models like Gaussian
mixtures, where the FIM may contain O(K?2d*) elements. Moreover, there is no guarantee that the
estimated matrix will be invertible.

Fortunately, Lin et al. (2019a) provided a method to avoid directly estimating the FIM for
mixtures, based on the fact that the FIM of the joint MCEF distribution is invertible. They
derived natural gradient updates for mixtures by exploiting the following relation between natural
and expectation parameters:

?A['w(A) = vMﬁw(A)7 (7)
where M = (m1,...,mx—1,Mi,..., Mk) are the expectation parameters of the mixture, with

M), = Eq,, [Ti(£)] and Tj(§) are the sufficient statistics of component £, for all k € [K].
Using (7), the natural gradient ascent update rule

Avi1 = A+ ptVaLu(A)|a,, (8)

becomes
Vkt41 = Ukt + PtV Lo(A)|A, 9)
Akt+1 = gt + PV, Lo (A)|A, (10)

where vy, ; := log(m+/7K ). Therefore, in order to use these update rules, at each iteration ¢, we
need to estimate the gradients V., L£,,(A)|a, and Vg, L, (A)|A,-

3.3 Estimation of the natural gradients

The gradient expression for the weight update (9) is given by equation (24) of Appendix J.2, for
which a Monte Carlo estimator ﬁiﬂf\)t 5= V/ﬂk\ﬁw (A)|a, is defined by (30) of Appendix J.4.

For the update of the individual component natural parameters (10), the gradient expressions
depend on the distribution considered. Since the exact form of ¢ is typically unknown, it is not
possible to derive closed-form expressions for these gradients. However, these gradients can be
expressed as expectations of functions of £ when £ follows gy, , for some k € [K]. Indeed, from the
chain rule, Proposition H.1, and equation (4), we have

VarLo(A)|a, = Vag Lo(A)[a, = In (My)"VxEq, [fur (& A)]|A,
= Eqy, [T, (M) (Ti(§) = Vi, A (Akt)) fuor (€5 AL,

where Jy, (M},) is the Jacobian matrix of A, with respect to My, as a function of Mj. These
functions can be evaluated at any & € R, so Monte Carlo approximations can be used to estimate
the expectations. Reparameterization tricks can give alternative expressions for these gradients
(see Section 4.3 for the example of Gaussian mixtures).

3.4 Stochastic natural gradient ascent

As discussed above, using the estimator ﬁgrz)t p alongside with some estimator V/M\kﬁw(At) for

VarLw(A)|a, = Var,Lo(A)|a,, we can derive a mini-batch stochastic natural gradient ascent
algorithm (SNGA), as described by Algorithm A in Appendix K.



The hyperparameters include the maximum number of iterations 7" (additionally, other stopping
criteria can be defined), the mini-batch size B determining the number of samples used in the Monte
Carlo gradient approximations, the number of components K in the mixture, the initial mixture
parameters Ag, and the learning rate sequence (p;)1<¢<7 associated with the natural gradient ascent
updates.

SNGA is the basis for the NVA-M algorithms, which incorporate annealing, an essential feature
for solving the multimodal optimization problem. Given the non-convex nature of the variational
problem within the constrained search space of these mixtures, there is a risk that the algorithm
may converge to a local solution of problem (P3) if w is too small. SNGA does not provide any
mechanism to remediate this issue, while the annealing process in NVA-M leverages Theorem 2.2,
mitigating this problem by approximating increasingly sharper Gibbs measures g, converging to
the annealed Gibbs measure gg.

3.5 The NVA-M algorithm

An annealing schedule, represented by a sequence of values (w¢)¢>1, sets the temperature w at each
iteration ¢, thus changing the objective function £, (A) and affecting the gradients in the update
rule (8). Algorithm 1 gives the NVA-M algorithm, where changes compared to the basic SNGA
with fixed w (Algorithm A) are colored in blue.

Algorithm 1: NVA-M

1 GIVEN a function /.

2 SET T, B, K, Ao, (pt)1<t<T, (Wi)1<i<T-

38 COMPUTE (vk0)ke(x] = (log(Tk,0/TK 1)) ke(k]-
4 fort=0:(T"-1) do

5 for k=1:K do

6 Sampre €1 gy, ., forb=1:B.
7 COMPUTE V/M\kﬁwt(At)-

8 UPDATE Ap 41 = Akt + ptVMkﬁwt(At).
9 end

10 for k=1:(K-1) do

11 COMPUTE 35?1)&1‘3

12 UPDATE vj, 441 = Ukt + pﬁgfxtﬂ.

13 end
14 end

15 COMPUTE (Wk,T)ke[K] from (Uk,T)ke[K]-
16 return Ar.

While the NVA-M algorithm is flexible and can accomodate any mixture of exponential family
distribution, in the rest of the paper, we will be considering Gaussian mixtures. The next sec-
tion shows how optimizing Gaussian mixture parameters with NVA-M directly solves the initial
multimodal optimization problem.



4 Natural variational annealing with Gaussian mixtures (NVA-
GM)

In this section, we investigate the use of NVA framework with Gaussian mixtures (NVA-GM).
First, we show how Gaussian mixtures allow to track the location of the modes of ¢ as w goes to
0, providing motivation for NVA-GM. Then, we write the NVA-GM algorithm and we discuss the
importance of the annealing schedule.

4.1 Annealing properties of Gaussian mixtures variational approximation

Here, for convenience, we parameterize Gaussian distributions by their means and covariance matri-
ces instead of their natural parameters. Thus, a Gaussian mixture with K components is expressed

as
K
90 =) Tk,
k=1

where the weights 7w = (m1,...,7x) sum to 1, and each component is a Gaussian g, = N (g, S;. ).
We aggregate these parameters into a vector, for all k € [K], 0y := (py,, Sk_l) and

0::(7r1,...,7rK,p,1,...,uK,Sl_l,...,S[_{l). (12)

Note that although 6 includes all the elements of 7 for clarity, only K —1 weights are free parameters
due to the summation constraint.
The variational approximation problem (P3) can be alternatively formulated as

0~ ¢ arg;nax Ego [(€)] + wH(qo)- (P4)

Although the solution 8% is not necessarily unique, we can analyze the behavior of 8% as w — 0.
Consider a sequence (w)¢>1 such that w; — 0 as ¢ — oo, and a corresponding sequence (6%%*);>1
where, 8%“* is a solution of (P4) for each w = w;. Our primary interest lies in the behavior of the
component means uZ’wi and precision matrices SZ’wt as w — 0, under the assumption that ¢ has

I = K non-degenerate modes (see Assumption D.2, for a precise statement).

Single Gaussian behavior. First, we consider the simpler case where ¢ has only one mode,
implying that the variational approximation is performed with a single Gaussian (I = K = 1),
solving

07" € argmax Eq, [£(§)] +wH(gp,). (P5)

1

We have the following result.

Proposition 4.1. Suppose that ¢ is strictly concave with one global maximum located at &. Let
wr — 0 ast — oo. Forallt > 1, let 07" = (u7™", (S7*")~1) be a solution of (P5) for w = w.
Then, we have

*,Wt

—> *
Ml t—o00 517

*,Wt 2 *
WS o Vel(&7).



The proof for this proposition is given in Appendix L. This result ensures that when ¢ has only
one mode, the Gaussian approximation converges weakly to a Dirac distribution centered at the
mode. Furthermore, it establishes a convergence rate for the covariance matrix of the Gaussian
distribution, showing that (S7*)~* ad (—V%E(Ef))‘l. This notably implies that the eigenvalues

of the covariance matrix decrease linearly with w, tending to 0 as w — 0.

Mixture behavior. Let us generalize this to the case where K = I > 1. According to The-
orem 2.2, g, converges to gg, with gg being a mixture of Dirac measures located at the modes
(&7,...,&%). Since gp is the limit of a sequence of Gaussian mixtures, where eigenvalues of the
covariance matrices vanish, it is reasonable to assume that the sequence 8*“ converges to, up to a
permutation of the component labels, to

00 = (¢1,...,¢0x,65, ..., E5,0,...,0),

so that in gg, the locations and the weights of the Dirac mixture are respectively retrieved as the
limits of the means and the weights of the components of the Gaussian mixture. Proving such
a result is beyond the scope of our paper. In Appendix M, we may also risk this conjecture to
demonstrate how S, s —wT V(&) for all k € [K].

4.2 Update rules and gradient estimators for Gaussian mixtures

In the previous section, we have shown that the component means of a Gaussian mixture variational
approximation of the Gibbs measure g,, converge to the global modes of the objective function ¢, as
g becomes closer to the annealed Gibbs measure gg. This provides motivation in using Gaussian
mixtures in NVA-M to extract the modes of ¢, as a direct output of the algorithm. More specifically,
if K = I, up to a permutation of the component labels, we would expect the means p;, , to converge
to the mode &}, the precision matrices S} ; to have eigenvalues diverging to +o00, and the mixture
weights 7, ; to converge to the weight ¢;. Here, we give more detailed expressions applying NVA-M
to Gaussian mixtures, giving rise to the NVA-GM algorithm which directly updates the means and
the precision matrices of the Gaussian components.

Natural gradient update rules. For a more practical use, the chain rule can be applied to
express the gradient with respect to the expectation parameters M) as a combination of gradients
with respect to the Gaussian parameters.

For Gaussian mixtures with means p;, and precision matrices Sy, for k € [K], the update (10)
becomes (see derivation in Appendix J.1)

2

Skit1 = Spt— Vg 1 Lo, (A)la,, (13)
Tkt k
Pt ~—

My ir1 = Mgy T ask,tlﬂvukﬁwt (A)|A,- (14)

In this case, at each iteration ¢, we need to estimate the gradients Vy, L., (A)|a,, V Sk—lﬁwt (A)|a,
and VIJ'k‘CWt (A)|A-

iBLR update rules. The improved Bayesian Learning Rule (iBLR) of Lin et al. (2020) can be
used instead of natural gradient update rule by adding a correction term in the update (10). In

10



Possible choices for: %(;kz)xt ’T’ff:@it B %(Jt kAt)
. ~(m ~ ,0 /\(S ! ,0)

If ¢ available %(J:,)xt, B 7L(ul:7kAt),B wi,Ar, B
If Vel available Y,

5 5 7_1 3y
If V3¢ available - - SN

Table 1: Possible choices for the gradient estimators used in the update of Gaussian mixture
parameters, depending on the availability of V¢ and Vzﬁ. The expressions for these estimators
are given by equations (30)-(35) in Appendix J.4.

the case of Gaussian mixtures, the iBLR is simply obtained as it only affects the precision matrix
update (13):

2p 2p? _
Sk7t+1 Skt - Tt S, 1‘th( )|At 2 : VS 1£wz( )’At‘sk,tlvsglﬁwt(A)‘At'
? k‘t

For Gaussian mixtures, this update rule has two advantages: it does not only improve convergence
speed, but it also ensures that the updated precision matrix S ;41 remains positive-definite (Lin
et al., 2020). In the rest of the paper, we focus on the natural gradient update rule for simplicity,
whlle keeping in mind that the iBLR rule can be used instead.

Estimation of the natural gradients. Typically, for Gaussian mixtures, the gradient needed
n (13) and (14) can be expressed under several forms using Bonnet and Price’s theorems (Ap-
pendix I), which are given by (25)-(29) in Appendix J.3. Several Monte Carlo estimators are
available for these quantities, given by equations (30)-(35) in Appendix J.4. Although all these es-
timators are unbiased and consistent, they may perform differently since they do not have the same
variance. Usually, it is hard to analytically determine which estimators have the lowest variances,
as the variance expressions are highly dependent on /.

The main factor to consider in selecting these estimators is the computational availability of the
gradient V¢£(§) and the Hessian VZE(E) Table 1 lists the possible choices in the case of Gaussian

mixtures. If Vzé(f) cannot be computed efficiently, then ’y‘(u ;\ QE)} cannot be used. If V¢£(§) cannot

| .
be computed efficiently, then 'y&“ ’“A Y B and 'yf At’ ]; cannot be used. In constrast, the estimators
0 NChy 0)
'78: kf\t) pandy Yo
in some experlments estimators using the higher-order derivatives of £ tend to perform better,
often having the lowest variances.

5 can always be computed as long as £ can be evaluated at all points. However,

4.3 The NVA-GM algorithm

Algorithm 2 implements NVA-M with Gaussian mixtures (NVA-GM). For convenience, instead of
updating the natural parameters of the components, the updates are performed on the parameter-
ization O defined by (12). The use of 6 instead of A does not affect the behavior of the algorithm
and is more user-friendly.

The behavior of the mixture parameters in the NVA-GM algorithm can be interpreted in dif-
ferent ways. The component means can be viewed as different particles searching for the modes,
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but the component themselves can be viewed as separate search distributions in an evolutionary
algorithm. These two interpretation are discussed in Appendices N.1 and N.2.

Algorithm 2: NVA-GM

GIVEN a function 4.
SET T, B, K, 6o, (pt)1<t<T, (wi)1<e<r-
COMPUTE (vk,0)ke(x) = (108(Tk,0/TK 1)) ke (K-
fort=0:(T—-1) do
for k=1:K do
SampLe €7 K N (., i1, for b=1:B.

~) o8
7 COMPUTE Yor B> Yooy As.B-

[, SN VU R

(=]

(5. -1 (k)
8 UPDATE Sk 141 = Skt — PV, A, 80 AND My yy1 = Hpy + Pt5k7t+17wtht,B-

9 end
10 or k=1:(K—1) do

11 COMPUTE ﬁfj’:kj)xt B

)

~(mi)
12 UPDATE Vg 441 = Ukt + PV o Ay B

13 end

14 end
15 COMPUTE (Wk,T)kE[K] from (Uk,T)kE[K]'
16 return 7.

In practice, in NVA-GM (and NVA-M), there is no guarantee that all components will converge
to distinct modes. The annealing schedule plays an essential role in helping the algorithm avoid
this issue, as we will discuss in the next section. A discussion on the choice of the hyperparameters
can be found in Appendix O.

4.4 Importance of the annealing schedule

Since we aim to reach gg, one might question the benefits of using an annealing schedule as opposed
to directly solving (P3) for a small, but fixed value of w, which effectively corresponds to a constant
annealing schedule. Intuitively, for a sufficiently small w, the Gibbs measure g,, should approximate
go closely.

Actually, the rationale for using an annealing schedule lies in the fact that although problem (P2)
is strictly convex, problem (P3) is generally not convex and can admit multiple local solutions. As
a result, the solution obtained by the natural gradient ascent algorithm may not be the global
solution A™“. In particular, local solutions can occur if several components of the mixture become
overly close, leading to their merging and sharing responsibility for the same mode, which can result
in the failure to identify the remaining modes.

We can interpret the component means as particles moving in the search space, as discussed
in Appendix N.1 and the temperature w as a parameter regulating the exploration-exploitation
balance. Appendix N.3 analyzes how the value of w influences the behavior of the system of
particles formed by the component means, particularly in terms of exploration versus exploitation.
A discussion on the choice of the annealing schedule is given in Appendix O.4.
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5 Fitness-shaped NVA-GM

NVA-M (and NVA-GM) can be interpreted in the light of evolution strategies, where each com-
ponents corresponds to a search distribution (Appendix N.2). Now, this section introduces fitness
shaping, a technique stemming from evolutionary computation (Wierstra et al., 2014; Ollivier et al.,
2017) aiming to make optimization algorithms more robust, to the NVA framework.

5.1 Fitness shaping in the IGO framework

In natural gradient updates, the gradients are highly sensitive to the values of the fitness function
f. Extreme values of f can distort the gradients, potentially leading to premature convergence or
numerical instability (Sun et al., 2009). To circumvent this issue, fitness shaping is used by the
NES (Wierstra et al., 2014) and the IGO framework (Ollivier et al., 2017). Fitness shaping replaces
the fitness function f at each iteration ¢ with a wtility function, which is an adaptive monotonic
transformation Wy, of f, based on its quantiles relative to the current search distribution py,.
In other words, for a given generation of samples, this transformation ranks fitness values in the
current population, telling how good an observed fitness value is relative to the fitness distribution
induced by the search distribution. This ensures that the gradient flow is invariant under any rank-
preserving transformation of the fitness function (Ollivier et al., 2017), which provides robustness
to the optimization process.

The transformation Wy is defined as Wy : z = Wa(z) = w (Pgro,, {f(£) < z}), where w :
[0,1] — R is a non-increasing function known as the weighting scheme. The choice of Wy can be
made through the choice of w. This definition guarantees that W (f(£€)) remains invariant under
monotonic transformations of f. Consequently, Wy can effectively compare the values of f and the
modes of f would remain modes of Wx(f(-)), i.e. argmax, f(§) C argmaxe Wiy, (f(£)).

The natural gradient ascent update rule can be modified as follows:

Att1 = At + peVaLwy, (A)|azx,, where Ly, (A) = Ep, [Wia, (£(£))]-

If the search distribution is a Gaussian py, = N (m, S~1), then similar to equations (25) and (26),
the gradients can be expressed as:

ViuLwy, (A) = Enpu,s-1)[S(€ — )Wa, (f(€))],
Vs-1Lw,, (A) = %EN(u,sfl)[(S(E — ) (& — )8 — S)Wh,(f(8))]-

These gradients are then used to compute the natural gradients, according to the update rules (13)

and (14). In practice, for a sample &,...,&€p LLd- pa, of size B, we can estimate
=R rk(&,) +1/2
Wi (F(60) = (P, (€)= 1(E)) ~ By = w (L),

where 1k(§,) = Card({j : f(&;) < f(&)}). According to Theorem 6 of Ollivier et al. (2017), the
following estimators are consistent for the gradients

V,\t = *SZ & — m VuLw,, (A),
1 ~ P
0y = SZ — w8 - 1)y, —— Vs 1L, (A).
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If B remains constant throughout the algorithm, then specifying the complete weighting scheme
w is unnecessary because only the ordered utility values u = (up)1<o<B := (W) )1<b<B = (W{(b —1/2)/B}) <<
matter. These utility values u must satisfy uy > --- > up, and can be chosen as a hyperparameter
of the algorithm.

5.2 Adaptation to the NVA-M framework

In the IGO framework, fitness shaping is a crucial technique ensuring the algorithm’s robustness,
therefore facilitating the convergence of the search distribution. In our method, as discussed in
Appendix N.2, each component of the mixture behaves similarly to a search distribution. Therefore,
it is logical to apply fitness shaping independently to each component. Adapting our method, we
suggest new updates of the natural parameters Ag, while keeping the updates on the weights of the
mixture w = (71, ..., 7 ) unchanged.

To incorporate fitness shaping, we define a decreasing function w on (0, 1). For each k € [K],

the so-called quantile rewriting W)(f:’A) for f,(-; A) is defined by
w,A
WM (@) = w Py, {ful€34) <a}). (15)

Natural gradient update with fitness shaping. Without fitness shaping, the natural gradient
update rule for A\; at each iteration is

A1 = Akt + 0t Va,Eqn [fur (€ A)] A=A, -

Proposition H.1 and the fact that Ag is an element of A ensure that

@Ak]EQA [fur (& A)] |A:At = 6>\1ICIEQA [fur (& At)] |A:At = 6>\kE(I>\k [Tk fuoe (&5 At)] ‘)\k:)\k,t'

This reveals that our update rule is equivalent to performing one step of natural gradient ascent to
solve

Ak = arg)r\nax Egy [fo: (& Ab)].

Now, given that W( A i rank-preserving for f,,(-; A¢), it is reasonable to replace f,(+; A¢)

by W;}: tAt)( Jur (55 A)). Th1s yields the following update rule for each Ay, k € [K]:

Abtt1 = Ak +Pt@A£W)(\w,At)()‘)‘)\k,ta where L w.a)(A) :=Eq, [ ;,:tAt (fuor (&5 AL))).
ket

Akt

The natural gradients can be estimated as before using Monte Carlo approximations, as equa-
tion (11) becomes

ViaeLw(B)|a, = gy [Tn, (Mi) (Th(€) = Va, Ak )W (fy (€ A1) (16)

FS-NVA-GM algorithm. Now, for simplicity, we only give the fitness-shaped version of NVA-
GM which uses Gaussian mixtures. The gradient derivations are given in Appendix P, and estima-

-1
tors L(u” /’“x) o and VU(JSA )u are defined in equations (38) and (39). FS-NVA-GM algorithm (fitness-
shaped NVA—GM Algorlthm 3) incorporates fitness shaping via the free parameter utility values u
(Appendix Q) provides some examples of utility values). Note that changes compared to NVA-GM

(Algorithm 2) are colored in blue.
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Algorithm 3: Fitness-shaped NVA-GM (FS-NVA-GM)

1 GIVEN a function /.

2 SET T, B, K, 6o, (pt)i<i<t, (W)i<e<r, w = (Up)1<p<B-
3 COMPUTE (vk,0)ke[r] = (108(Tr,0/7 K t))keK]-

4 fort=0:(T"-1) do

5 for k=1:K do
(k) iid. 1
6 SAMPLE & "~ N (pyy, Sy ;), for b=1:B.
7 SORT (Eém)lgbgB in decreasing order for f,, (-, A¢).
-1
8 COMPUTE fof ‘kx"u, Afk}x,),u‘
A et o

9 UPDATE Sk 141 = Skt — PtVLtht),u AND  fyp4q = Py + ptSk;HuEthu.
10 end

11 for k=1:(K-1) do

12 COMPUTE ﬁg’“j{t B

13 UPDATE U 441 = Vgt + pﬁgfﬁth.

14 end
15 end

16 COMPUTE (ﬂ'k,T)ke[K] from (Uk,T)ke[K]‘
17 return 7.

6 Simulation study

In this section, we show simulation results to illustrate the ability of our algorithms to answer our
initial optimization problem. First, we check the mode-finding performances of our algorithms.
Then, we showcase the ability of the mixture weights to capture information on the flatness of the
modes.

6.1 Mode-finding properties

We apply the Hessian-based version of NVA-GM and FS-NVA-GM (Algorithms 2 and 3) to find the
modes of several test functions. For FS-NVA-GM, we use the utility values based on the CMA-ES
weights described in Appendix Q. For simplicity, the same annealing schedules are used for both
algorithms, even though their optimal annealing schedules might differ. Our algorithms fitting a
mixture of K components are compared against running K independent instances of traditional
Stochastic Gradient Ascent (parallel SGA, denoted by pSGA) and CMA-ES (parallel CMA-ES,
denoted by pCMA-ES).

Computational cost. For all the algorithms considered, we set comparable numbers of evalua-
tions for £ (or V¢, V2¢). For pSGA and NVA-GM, we use a mini-batch size B. For pCMA-ES and
FS-NVA-GM, the same number of samples is used to compute the gradients, after truncation se-
lection of level i € (0, 1]. pSGA requires BKT evaluations of V/. NVA-GM uses BKT evaluations
of ¢ for the mixture weight updates, which can also be used to update the means and precision
matrices through the black-box estimators. If one wishes to use the derivatives of £ to compute
the gradients, BKT further evaluations of V¢, and possibly V2¢ are needed. For pCMA-ES and
FS-NVA-GM, we increase the mini-batch size by a factor n~! compared to pSGA and NVA-GM,
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Number of evaluations of: 20€) Ve(g) V20(€)
pSGA 0 BKT 0
pNewton 0 BKT BKT
pCMA-ES n ' BKT 0 0
NVA-GM (Hessian) BKT 0 (or BKT) BKT
NVA-GM (gradient) BKT BKT 0
NVA-GM (black-box) BKT 0 0
NVA-GM-IS (Hessian) BT 0 (or BT) BT
NVA-GM-IS (gradient) BT BT 0
NVA-GM-IS (black-box) BT 0 0
FS-NVA-GM n'BKT 0 0
FS-NVA-GM-IS niBT 0 0

Table 2: Number of calls to £ or its derivatives for pSGA, pNewton, pCMA-ES, NVA-GM and
FS-NVA-GM. The black-bozx versions of NVA-GM and NVA-GM-IS mean that only evaluations of

¢ are performed while gradient (resp. Hessian) refers to the addition of evaluations of V¢ (resp.
V20).

ensuring that the effective number of samples used to compute the gradients after truncation selec-
tion remains the same. Therefore, pPCMA-ES and FS-NVA-GM require n ! BKT evaluations of /.
Overall, the computational cost of all five algorithms is O(BKT) evaluations of £ or its derivatives.

It is noteworthy that the number of evaluations needed for NVA-GM and FS-NVA-GM can
be reduced by a factor of K through importance sampling. This consists of using a single sample
per iteration to update all components, leading to algorithm variants that we call NVA-GM-IS
and FS-NVA-GM-IS. Typically, to compute VI_LKW)(\:,At)(A)’)\k’t and VSA.CW/{:,A”(A)])%JS for all

k € [K], Lin et al. (2019a) used samples &, ..., &g from the mixture g, to update the parameters
of all components. Using this technique, the number of calls to ¢ or its derivatives for NVA-GM-IS
and FS-NVA-GM-IS is reduced to O(BT). Table 2 summarizes the number of calls to ¢ and its
derivatives required by these algorithms. For comparison, we also include the number of calls used
by K independent runs of Newton—-Raphson’s method (parallel Newton, pNewton) is indicated,
although it is important to note that Newton-Raphson’s method is generally unsuitable for non-
convex optimization, as it does not distinguish between minima and maxima.

We use two metrics to assess the performances of the algorithms, the global peak ratio (GPR)
and the all-peak ratio (APR), defined as follows:

1
I xH

H H
1
GPR = > GFj,, and APR= JxHhE_lAFh, (17)

h=1

where H algorithm runs with random initializations have been performed and for each run h, GF}j
(resp. AF}) is the number of global (resp. global and local) modes found, out of the I (resp. J)
admitted by the target function. We consider that a mode £* has been found if there is at least one
final component mean g ; in the rectangle £ £ €(1,...,1)”, where e = 1072. These two metrics
evaluate two desired properties of a multimodal optimization algorithm: identifying the global
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modes and identifying distinct (global and local) modes. Empirically, NVA-GM-IS and FS-NVA-
GM-IS tend to require more iterations to converge, and thus are excluded from the comparison.

Symmetric Gaussian mixture. We consider ¢ to be the log-density of the Gaussian mixture
having three components, with means located at v, = (sin(7w/2 4 2kn/3), cos(w/2 + 2kn/3)), k €
{1,2,3} and covariance matrices set to 02T where 0> = 0.54. £ has three global modes at 0.5117,
k€ {1,2,3} and one local mode at (0, 0).

For K € {2,3,4,5}, we have uniformly drawn K locations in [~2,2]?. These locations are
used as initial component means for NVA-GM and FS-NVA-GM and the initial positions for pSGA

and pCMA-ES. In NVA-GM and FS-NVA-GM, we use T' = 5000, m1 o = --- = mgo = 1/K,
Sié = =8 =1, w = w/t with wy; = 1, and p; = 107} (wy /wy)*®. For NVA-GM, we use
Slmel) 4 5(5c2)

the gradient estimators 4 x5 and 4 X 5, where B = 4. For FS-NVA-GM, we use the CMA-ES
utility values given by (40)’ in Appendix Q, with B = 16 and n=1/4, i.e. By = 4. For pSGA, we
use T5GA) = 10000 iterations and a learning rate sequence pESGA) = ¢~11/2 For pCMA-ES, we
use the same population size and number of selected individuals as FS-NVA-GM, i.e. B = 16 and
By = 4. The other hyperparameters are selected as advised in Hansen (2006). To detect if one
mode is found, we check if the coordinates of at least one component mean (or pSGA particle) at
the end of the algorithm are equal to the ones of the mode, with a tolerance of 0.1 in all dimensions.
We replicated the experiment 100 times, recovering the GPR and APR metrics.

These estimates are given in Figure 1. We remark that with these parameters, the component
means in both NVA-GM and FS-NVA-GM with CMA-ES utility weights almost always find different
modes for K € {2,3,4}. FS-NVA-GM almost always finds the three global modes, for K > 3. NVA-
GM has slightly lower performance when K = 3, meaning that it sometimes finds two global modes
and the local modes instead of all three global modes, but performs similarly as FS-NVA-GM when
K > 4. Expectedly, although pCMA-ES finds global modes more often than pSGA, it does not
find more modes than pSGA. For all values of K considered here, both NVA-GM and FS-NVA-GM
heavily outperform pSGA and pCMA-ES with respect to both metrics.

Styblinski—Tang’s function. Styblinski-Tang’s function is defined by ¢(§) = —Z?:l(gf —
16£2 + 5¢;)/2. £ has 24 — 1 modes, including one global mode. The locations of the modes are
{(@iy, -y wiy) ¢ (i1, .,4q) € {1,2}9}, where 21 ~ —2.90 and z2 =~ 2.75, and the global mode is
located at (z1,...,21).

We pick d = 4 so there are 16 modes. For K € {2,4,6,8,10,12,14, 16, 18,20}, we have uniformly
drawn K locations in [—4,4]%. These locations are used as initial component means for NVA-GM
and FS-NVA-GM and the initial particle positions for pSGA and pCMA-ES. In NVA-GM and

FS-NVA-GM, we use T = 200, m g = -+ = mgo = 1/K, Sy =+ = Sy = I, w; = wi /t? with
wyp = 40000, and p; = 10_4\/@- For NVA-GM, we use the gradient estimators 'Ayff‘ fxg and
~(85.12)

ok 5 » where B = 4. For FS-NVA-GM, we use the CMA-ES utility values given by (40) with

B =16 and n = 1/4, i.e. By = 4. For pSGA, we use TGA) — 10000 iterations and a learning rate

sequence pESGA) =t~11/2 For pCMA-ES, we use the same population size and number of selected

individuals as FS-NVA-GM, i.e. B = 16 and By = 4. The other hyperparameters are selected as
advised in Hansen (2006). To detect if one mode is found, we check if the coordinates of at least
one component mean (or pSGA particle) at the end of the algorithm are equal to the ones of the
mode, with a tolerance of 0.1 in all dimensions. We replicated the experiment 100 times, recovering
the GPR and APR metrics.
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Figure 1: The first graph shows that FS-NVA-GM with CMA-ES utility values almost always
locates distinct global modes of the symmetric mixture log-density. For K > 3, it almost always
finds all three of them. The second graph indicates that the identified modes are distinct as long as
there are at most as many components as (global and local) modes. NVA-GM performs similarly,
except when K < 3, where it sometimes misses a global mode, returning the local mode instead.
Parallel CMA-ES and parallel SGA struggle more to find distinct modes. The dashed line represents
the maximum performance achievable for given values of K.

These estimates are given in Figure 2. The unique mode of Styblinski-Tang’s function is almost
always found by NVA-GM and FS-NVA-GM for all K, and by pCMA-ES for K > 6. pSGA cannot
reliably find the mode even for K = 20. Both NVA-GM and FS-NVA-GM show good capability
to capture distinct modes. FS-NVA-GM performs slightly worse than NVA-GM, as for K = 16, it
finds in average 16 x 0.84 = 13.4 modes out of 16, against 16 x 0.92 ~ 14.7 out of 16 for NVA-GM.
As K is larger, the gap between NVA-GM and FS-NVA-GM on one side and pSGA and pCMA-ES
on the other side is larger, with pCMA-ES performing particularly worse than pSGA. This is not
surprising, since the CMA-ES has been designed for global optimization, it is more likely to find
the global mode rather than a local mode when compared to SGA.

Other benchmark functions. Additionally, we have tested FS-NVA-GM on several benchmark
functions from the CEC2013 suite for black-box multimodal global optimization (Li et al., 2013). A
detailed description and simulation results are provided in Appendix S. For simpler functions, FS-
NVA-GM achieves good performance. However, for more complex or high-dimensional functions,
FS-NVA-GM is limited by its computational cost. In such cases, FS-NVA-GM would also require a
significantly larger function evaluation budget to match the performance of current state-of-the-art
black-box algorithms (Ahrari et al., 2017; Maree et al., 2018; de Nobel et al., 2024). It is important
to note that FS-NVA-GM is only a straightforward implementation of the NVA framework using
Gaussian mixtures with fitness shaping and that the NVA framework itself is not primarily designed
for black-box problems. Achieving state-of-the-art performance by black-box optimization criteria
would certainly require incorporating additional techniques.
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Figure 2: The first graph shows that both NVA-GM and FS-NVA-GM with CMA-ES utility values
almost always locates the unique global mode of the 4-dimensional Styblinski-Tang’s function for
all values of K > 2. The second graph indicates that the identified modes are distinct most of
the time, except when K is close to the total number of modes (16). From this point of view,
NVA-GM performs slightly better than FS-NVA-GM due to this latter’s greater tendency to favor
convergence to the global mode over the 15 other local modes. Parallel CMA-ES and parallel SGA
struggle more to find the global mode, as well as diverse local modes, although parallel CMA-ES
matches NVA-GM and FS-NVA-GM'’s performance when K > 8 in finding the global mode. The
dashed line represents the maximum performance achievable for given values of K. for different
values of K.

6.2 Limit of mixture weights

Here, we showcase the properties of the limit mixture weights. Both NVA-GM and FS-NVA-GM
have the same weight updates, hence the same properties. We apply NVA-GM (Algorithm 1)
to three objective functions with different mode flatness. With these experiments, we validate
the expression of the coefficients specified in Theorem 2.2. Appendix R gives an example in a
degenerate case, which is not described by Theorem 2.2, but discussed in Appendix E.

Symmetric Gaussian mixture. Here, £ is the log-density of the symmetric Gaussian mixture
described above in Section 6.1. We apply NVA-GM with K = 5, using the same hyperparameters
as above, except T = 10000 to let the weights converge further. We recover the positions of the
component means and the value of the weights at each iteration.

Figure 3 illustrates the trajectories of the component means and the evolution of the mixture
weights during a run where each mode is successfully identified by a distinct mean. We see that
component means 1, 3, and 4 converge to the three global modes, whereas component mean 2
converges to the local mode. According to Theorem 2.2, the weights of the search mixture should
be shared between components 1, 3, and 4. The target being symmetric, the three global modes
have the same Hessian determinant, so all three weights should converge to 1/3, which is the case
in this run.

Asymmetric Gaussian mixture. Now, we consider the log-density of a Gaussian mixture with
three components with means v; = (—1,0), v, = (0,0) and 53 = (1,0), covariance matrices
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Figure 3: Left: The trajectories of the means in a run of NVA-GM on the log-density of the
symmetric mixture with K = 4 show that the four components track different modes. The contour
plot represents non-equally spaced levels of £. Right: As expected, the weights of components
tracking global modes (1, 3, 4) converge to 1/3, whereas the weight of the component tracking the
local mode (2) vanishes.

3, = diag(0.3,0.6), 3o = diag(0.005,0.9), ¥3 = diag(0.03,0.3), and weights m = 0.1, m =
(1 — mp) det(23) 12 /(det(22) Y2 + det(X3)~1/2) ~ 0.527 and 73 = 1 — 7] — m ~ 0.373. This
mixture is designed so that its components are well-separated and it has two global modes at v,
and «v; and one local mode in-between at v,. However, the curvatures at the modes differ.

We apply NVA-GM with K = 3, using T = 1000, 1,0 = 72,0 = T30 = 1/3, 5170 = SQ’(] = 53,0 =
I, w; = wy/t with wy = 100, and p; = 1073(w1 /w;)?®. For the gradients, we use the estimators

-1
’Ayi)“ /’ig and 'Ayisﬁ ]_’32), where B = 4. We recover the positions of the component means and the value

of the weights at each iteration.

Figure 4 illustrates the trajectories of the component means and the evolution of the mixture
weights during a run where each mode is successfully identified by a distinct mean. We notice that
component mean 2 converges to the local mode near 75, hence its weight vanishes. The mixture
weight is shared between components 1 and 3, converging to the two global modes, near v; and 3
respectively. According to Theorem 2.2, the weight of component 1 should converge to ¢; ~ 0.586.
Analogously, the weight of component 3 should converge to é; &~ 0.414. These claims are supported
by the behavior of the weights across this run.

7 Remote sensing inverse problem in planetary science

In general, the modes of a Gaussian mixture cannot be found analytically (Carreira-Perpinan, 2000;
Ray and Lindsay, 2005). To illustrate the practical interest of finding the modes of a Gaussian
mixture in applications, we consider a remote sensing task, which consists of characterizing, with a
few meaningful parameters, sites at the surface of a planet. The composition of the surface materials
is generally established, with remote sensing techniques, from images produced by hyperspectral
cameras, from different angles during a site flyover. An example for the planet Mars is described
by Murchie et al. (2009); Fernando et al. (2016). These images carry information on the surface
parameters which are extracted by inverting a model of radiative transfer. The Hapke model is
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Figure 4: Left: The trajectories of the means in a run of NVA-GM on the log-density of the
asymmetric mixture with K = 3 show that the three components track different modes. The contour
plot represents non-equally spaced levels of £. Right: As expected, the weights of components
tracking global modes (1, 3) converge to their respective limits ¢; ~ 0.586 and ¢35 ~ 0.414, whereas
the weight of the component tracking the local mode (2) vanishes.

such a photometric model, that relates physically meaningful parameters to the reflectivity of a
granular material for a given geometry of illumination and viewing. Formally, in our illustration,
it links a set of parameters @ € R* to a theoretical surface Bidirectional Reflectance Distribution
Factor (BRDF) denoted by y = Figapke(0) € R'Y corresponding to 10 geometries. This number of
geometries is typical of real observations for which the number of possible measurements during a
planet flyover is limited. The parameters are 8 = (w, 0, b, c), representing respectively the single
scattering albedo, macroscopic roughness, asymmetry parameter and backscattering fraction. More
details on these quantities and their photometric meanings may be found in Schmidt and Fernando
(2015); Labarre (2017). Although available, the expression of Fiapke is very complex and tedious
to handle analytically, with a number of approximations required (Labarre, 2017). In practice, it
is therefore mainly used via a numerical code, allowing simulations from the model.

Previous studies (Kugler et al. 2022; Schmidt and Fernando 2015; Forbes et al. 2022) have
shown evidence for the existence of multiple solutions or for the possibility to obtain very similar
observations from different sets of parameters, which makes this setting appropriate for testing the
ability of our procedures to recover multiple solutions. To do so, a training set of 10° pairs (8,y) of
parameters and observations are available and correspond to the application of the Hapke simulator
to each @ in the training set. We use the same experimental setting and preprocessing described in
Kugler et al. (2022); Forbes et al. (2022). The approach of Deleforge et al. (2015) is used to learn
a parametric approximation of the posterior distributions. More specifically, we use the so-called
GLLiM model to produce for each possible observation y an approximate posterior distribution on
0, p(@|y), which is a Gaussian mixture model with K = 40 components in dimension 4.

In this illustration, we focus on the characterisation of one specific observation y, coming from a
mineral called Nontronite which has been chosen as likely to exhibit multiple 8 solutions (see Kugler
et al. 2022 for a description). The hope is then to recover these likely solutions as the modes of the
40-component Gaussian mixture posterior distribution, which approximate the desired posterior
p(0)y,), as provided by GLLiM. We thus apply the NVA-GM algorithm to find these mixture
modes. As the number of modes is a priori unknown (Carreira-Perpindn and Williams, 2003a,b;
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Figure 5: Remote sensing illustration: BRDF signal reconstructions. The Nontronite observed
signal y, (black) is compared to the reconstructed signals from the 4 modes found by NVA-GM,
0: (red), 62 (blue), O3 (green) and 64 (mauve). The black dashed lines show a band of +0.05
around y,. The red dashed line shows for comparison the signal in the training set with the highest
correlation to y,.

Aprausheva et al., 2006; Améndola et al., 2020), we ran NVA-GM several times with K = 10
and found consistently 4 candidate modes at most, the 4th one being much smaller than the
others and more difficult to find. The 4 solutions found are 6; = (0.584,0.296,0.201,0.143), 63 =
(0.676,0.317,0.627,0.030), €3 = (0.583,0.309,0.017,0.614) and 64 = (0.729,0.232,0.992,0.159).
Their respective log-density values are 6.16, 5.17, 4.35 and 1.91, reflecting the mode order.

In the absence of ground truth, it is difficult to fully validate these estimations. However a simple
inspection consists of checking the reconstructed signals obtained by applying the Hapke model to
the 4 sets of estimated parameters and to compare them with the inverted signal y,. Figure 5 shows
the inverted signal compared to the 4 reconstructed signals. The proximity of the reconstructions
confirms the existence of multiple solutions and thus the relevance of a multimodal posterior. One
solution can be selected by choosing the parameters that provide the best reconstruction assessed
for instance by the smallest mean square error (MSE). For the 4 solutions, we get respectively
MSE; = 0.00338, MSEy, = 0.00343, MSEs = 0.0115 and MSE3 = 0.0173. Figure 5 is visually
consistent with the MSE values, with the 81 and 6+ solutions being close to the observed signal
and within a +0.05 band corresponding to the standard deviation of the noise added to the training
set. The two other solutions are less satisfying in terms of shape although not too far from y, either.
Figure 5 also shows in the red dashed line the signal in the training set that is the most correlated
to yo. This signal is much further away from y, showing the gain provided by considering posterior
modes instead.

8 Conclusion

In this paper, we proposed a novel, principled framework for multimodal optimization, contrast-
ing with state-of-the-art approaches using niching, particle swarms or restart strategies. This
framework uses principles from variational inference to reformulate the initial optimization task
as a variational problem, an optimization task focused on the parameters of a Gaussian mixture
search distribution. Geometry-informed methods, such as natural gradient ascent or the improved
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Bayesian Learning Rule, are used to solve this variational problem. An entropy penalty is intro-
duced to the variational objective, promoting convergence of the means of the mixture components
to different optima.

We derived a baseline algorithm for this framework, the NVA-GM algorithm, and we proposed
several extensions, including Hessian-free and black-box (derivative-free) versions. We also incor-
porated fitness shaping into the black-box version, resulting in the FS-NVA-GM algorithm. In our
experience, the Hessian-based NVA-GM and FS-NVA-GM versions perform the best, although these
algorithms face challenges when the target function number of modes K is large, as the number of
objective function evaluations scales linearly with K. Importance sampling can be used to mitigate
this dependency on K, although it would require a larger mini-batch size. Finding the optimal
proposal distribution at each iteration is an open problem. These versions of NVA-GM and FS-
NVA-GM also suffer in high-dimensional settings (d is large) due to the large covariance matrices
of the Gaussian mixture, inducing high computational cost. However, constraining the variational
family, for example, to Gaussian mixtures with diagonal or isotropic Gaussian covariance matrices,
can address this issue.

In summary, the NVA-M framework introduces a novel approach to multimodal optimization
with variational optimization as a central principle, providing a foundation for developing more
sophisticated problem-specific algorithms. For example, as variational optimization gains traction
in deep learning (Osawa et al., 2019; Shen et al., 2024), it would be interesting to adapt a multimodal
optimization algorithm suitable to handle similarly challenging problems. Future work then includes
developing solutions to reduce the computational cost and extend the framework scalability. Mode-
finding performance can also be improved by incorporating new techniques or heuristics inspired
from existing methods. Finally, further research may focus on the development of adaptive learning
rates and annealing schedules, which are currently tuned by trial-and-error due to their problem-
dependent nature.
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Appendices

A Strict convexity of the Kullback—Leibler divergence

In this section, we prove the strict convexity of the Kullback—Leibler divergence, stated by the
following proposition.

Proposition A.1. If Supp(q) C Supp(p), then KL(q || p) is strictly convex with respect to q.

Proof. Let qp and ¢; be two distinct probability distributions such that Supp(qo) C Supp(p) and
Supp(q1) C Supp(p). For t € (0,1), define

g = (1 —1t)q0 + tqu.
Our aim is to show that for all ¢ € (0, 1),
Ap:= (1= 1)KL(qo || p) + tKL(q1 [| p) — KL(g: [| p) > 0.

Let g : ¢ — gloggq. Since qo, q1 and ¢; are absolutely continuous with respect to p, then we have

A = / (1= £)9(q0) + tolar) — 9la)](€)deE.

To conclude that A; > 0, we write the first order Taylor expansions of g(qy) and g(q1).
For i € {0, 1}, define ¢; : u+— (1 —u)q; + ug;, then

9(ai) = g(wi(1))

1
= g(i(0)) + (wi(1) — 9i(0))g'(¢(0)) — /0 (pi(u) = ©i(0))g" (@i(u))dpi(u)

/ ! 1
= 9(a) + (0= g/ (@) + (0= 0 [ G (1= u)de
Therefore,
(1= glan) + ) —ota0 = 0~ 0~ | (it ) (-
o \(I—u)qg+ugp (1—-u)g+uq
Since ¢o and ¢ are distinct, it can be deduced that A; > 0. ]

B Link between the Gibbs measure and the variational problem

In this section, we prove Proposition 2.1, which is stated in Section 2.1.
Proof of Proposition 2.1. This proof is similar to the one of Alquier (2024). Let ¢ be a probability
distribution. Consider the Kullback—Leibler divergence between ¢ and g,,:

0> —KL(q [ 9)

_ o 4(6)

= /q(ﬁ)gf)dﬁ—/q(&) log (§)d€ —log Z(w)

= (E,[A(&)] + wH(a) ~ log Z(w).

Since KL(q || g») = 0 if and only if ¢ = g, it follows that the quantity E,[¢(£)] + wH(q) is
maximized if and only if ¢ = g. O
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C Continuity of Gibbs measures with respect to the temperature

In this section, we prove that the mapping w — g, is continuous with respect to the total variation
distance.

Proposition C.1. For some wq in (0,+00), we have
19 — gonTV — 0,
w—rwQ
where ||p—q||Tv denotes the distance in total variation between p and q, i.e. ||p—q||Tv = sup4|p(A)—
q(A)]-

Before giving a proof for this proposition, we recall Scheffé’s theorem (e.g. Tsybakov, 2008, p.
84).

Lemma C.2 (Scheffé’s theorem).

I alirv = 5 [ 19(€) - ale)lde.

Proof of Proposition C.1. By Scheffé’s theorem, it is enough to prove that g, —— ¢g., almost
w—rwo

everywhere on R%. Let £ € R%. Denote et w = gu(€).
The analytical expression of the derivative ¢ (w) can be derived on (0, +00). Because Z(w) =

[exp(4(€)/w)dE, we have Z'(w) = —w 2 Z(w)E,, [¢(£)]. Therefore,

“e) wo e,
“Plﬁ(w)‘ = % (;(L)N = l;%);(;) = wz(i)(z ) = go:u(f) 1£(§) — Eq, [£(&)]] < co.

This shows that g is a continuous function on (0, +o00), for all £ € R9. This ensures that

e (w) e (wo) almost everywhere on R?, which concludes the proof of this proposition. [
w—rwo

D Laplace’s method

In this section, we will prove Theorem 2.2. Before that, we state a multivariate version of the
well-known Laplace’s theorem (e.g. Section 6.4 of Bender and Orszag, 1999), which seems to be
due to Hsu (1948) (see also IX.5 of Wong, 2001).

Theorem D.1 (Laplace’s theorem). Let £€* € RY, § > 0 and Bg+(8) be the ball centered around &*
and with radius 0. Let ¢ : Bg«(6) — R be a twice continuously differentiable function such that

° $(&7) =0,
o $(&) <0 for all & € Be=(6),
o det(—V2¢(£*)) > 0.

Then, for all bounded function f, for all 0 < e <4, we have

[, OO/ =, m) (67 det(~To(7)
6* €
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Now, to prove Theorem 2.2, we recall that it is assumed that £ is twice continuously differentiable
and all the global modes of ¢ are non-degenerate, i.e. the Hessian matrix of ¢ is negative definite
at these modes. Without loss of generality, we can also consider that ¢ is non-positive. Therefore,
the following assumptions is made throughout this section.

Assumption D.2. The function £ satisfies the following conditions:
e the set {&],...,&7} = argmax, ((§) is finite and maxg £(§) = 0,
o [paexp(£(€)/w)d€ < oo for all w >0,
o ( is twice differentiable,

e for all the global modes {&7,...,&1} of £, we have

det(—V?0(&})) > 0.

Now, we need to define the following notations and prove some lemmas.

Notations. Here, some useful notations are defined for the proof.

e In the metric space (R%,||-||), for some € > 0, B.(§) denotes the ball of R? centered on £ with
radius e.

e Let € be such that 0 < € < min; ; [|£ —&7[|. Such an € exists because there are a finite number
of global modes, so they are all isolated. In this case,

— KE = U{:l BE(S?)?
— Me = %maX€€Rd\Ke E(E),
~ KM = K N {€ e RY: 0(€) > M.},

e Let f be a continuous and bounded function. For w > 0, we define
— for alli € [I], Cf (w) == [ (gr) F(£)e" O/ dE,
— Cl(W) 1= Jaa g, F(E)O/dE = Z(w) = X1, C (w).
e We write C}(w) = C’ifo (w) and C} (w) := C’({O (w) for fo=1.
Lemma D.3. For a continuous and bounded function f on R?, we have

Cf ()
Zo(w) W 0.

Proof. For all £ € Ke(Me), we have M, < £(&) < M. This means that

0(&)/w
22 [, <O

> eMe/wp(f(Me)),
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Therefore, for a continuous and bounded function f, we have

Cg(w) o | St
. F(£)| R CO-Mge
< maX£€Rd\K€ |f(€)| e%(@(&)—Me)dE
P(KG(ME)) RA\ K,

Any sequence (w;)¢>1 such that wy t—> 0 is bounded, so there is a value wjs such that w; < wpy
- —00

1
for all t > 1. Therefore, on R?\ K, we have ewr (&M ot©)/wnr for all ¢ > 1, since £(&)— M, < 0.
Thus, we can apply the dominated convergence theorem and

Cf ()
Z(w)

lim
w—0

< lim In&‘que]Rd\[]\(J6 ’f(E)‘ 65(4(5),M5)d£

- II?[?:LXgeRd\Ke |f(£)| lim e%(g(g)_Me)dé

B IP)(KE(MG)) Rd\KE w—0

=0.

Lemma D.4. For a continuous and bounded function f on R, we have for all i € [I]
(2m)~ 220, (w) — f(&7) det(Li) 7,
w—r
where L; is the matriz such that L? = —V20(&}).
Proof. This is a direct consequence of Laplace’s theorem (Thm. D.1). O

Lemma D.5. For a continuous and bounded function f on R, we have for all i € [I]

f w
S ane

det(L”il
S det(Ly)—t

Proof. Remark that

where ¢; = f(&) and L; is the matriz such that L? = —V20(&}).

Z(w):/ O/ qe
R4
I
_ &)/ g + / &)/ g
e e
/Rd\m Zl ()

I
= Ci(w) + Y _ Ch(w).
—

Therefore, applying Lemma D.3 and then Lemma D.4, this ensures that

i Cif(w) = lim Cif(W)
w20 Z(w) w0 Clw) + L, Cl(w)
f
i G
w03 Ci(w)
d 7 -t *
U



Finally, thanks to Lemmas D.3 and D.5, we can concisely prove Theorem 2.2.

Proof of Theorem 2.2. Using Lemmas D.3 and D.5, we have for any continuous and bounded func-
tion f,

Jaic, JE)LONAE + 375y [, g1y F(€)e /g

lm [ f(&)g.(d€) = lim
Rd w—r

w—0 Z(W)
W) H®)
_“1)11%{ Z(w) +; Z(w)
I
=0+ ) &f(&)
i=1
I
- / G (Z Eide; <d€>> '
R4 i=1
This proves that g, converges weakly to Zle 5155;- =

E Interpretation of the weights of the annealed Gibbs measure

We claim that the weights (¢;);c(p) of the annealed Dirac mixture go of Theorem 2.2 provide valuable
insight on the curvature of the function ¢ at its modes. Specifically, these weights offer a means to
assess the “flatness” of the modes. To explore this, we introduce a measure of flatness and discuss
the implications of the non-degeneracy assumption.

A measure of flatness based on curvature. The Hessian matrix V2/(§) characterizes the
local convexity (or concavity) of £ at a location £. To quantify the flatness of a mode, we consider
the eigenvalues of V2¢(§), which indicate the curvature of ¢ along the directions specified by the
eigenvectors. At a maximum &, the eigenvalues {\;1,..., A4} of VZ{(&F) are non-positive, and
the sharpness of the mode is reflected by the magnitude of |A;1],...,|Xiq|. To characterize this
sharpness, one can compute the geometric mean |H?:1 )\2-7j|1/ ¢ Conversely, the flatness of the mode

can be measured by
—1/d

d
(&) =2
j=1

To illustrate the utility of  as a measure of flatness, consider a multivariate normal distribution
() :=N(-;p,X), with mode located at p. The Hessian at the mode is given by Vg/\/’(u; w,X) =

—det(X)"1/2x7!, leading to
d+2
2d

C(p) = det(=VEN (p; p, 2) 7 = (det 2)

Thus, () increases with the flatness of the Gaussian distribution, as larger values of det(3)
correspond to flatter distributions.
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Link with the annealed mixture weights. Now, for a general function ¢ with modes {&7,...,&7},
Theorem 2.2 establishes that the weight ¢; assigned to the mode &€ by the annealed Dirac mixture
is proportional to ((£;). Indeed,

~1/2
d /

& ocdet(~V20(EN)) 2 = | [T | =cEn™™

j=1

Therefore, under the non-degeneracy assumption, the annealed Dirac mixture assigns greater weight
to flatter maxima, as measured by (.

Degenerate modes. The Hessian matrix V2/ is negative semi-definite at maxima, meaning that
the curvature of ¢ is non-positive in all directions. A zero eigenvalue indicates complete flatness
along the corresponding eigenvector direction. Therefore, the number of zero eigenvalues determines
the dimension of the subspace on which the mode is completely flat. This can be interpreted as the
“degree of flatness” of the mode, with modes having more zero eigenvalues being considered flatter.
The concept of degree of flatness helps clarify the interpretation of . In particular, { measures
flatness only for non-degenerate modes (where the “degree of flatness” is 0). For degenerate modes,
where ((£]) = oo, ¢ views them as “infinitely” flatter than non-degenerate ones.

Beyond the non-degeneracy assumption. While Theorem 2.2 excludes degenerate cases, we
can provide an intuitive explanation of the annealing process when degenerate modes are present.
Since the weights of the Dirac mixture are related to the flatness index (, non-degenerate modes
will have comparable curvatures. In contrast, when degenerate modes are present, the weights of
the Dirac mixture are predominantly assigned to the modes with the highest degree of flatness, as
these are “infinitely” flatter than modes with a lower degree of flatness. The exact weights depend
on the higher-order derivatives of £. Deriving these explicitly is beyond the scope of this paper,
which focuses on the non-degenerate case that is applicable to most scenarios.

F Link with Bayesian inference

The main concepts of NVA-M are the variational formulation of the initial optimization problem
giving rise to Gibbs measures, their approximation in the space of mixtures of exponential family
distributions using natural gradients, and annealing of the temperature parameter. In this section,
we show that they admit a Bayesian interpretation. Then, we conclude that our optimization
framework can be seen as a generalized Bayesian problem where the prior is flat.

F.1 Variational formulation and generalized posterior

Bayesian approaches to statistical inference consist in updating prior beliefs about an event A
in light of an observable event B. Given a prior probability P(A), Bayesian inference seeks to
determine the posterior probability P(A | B), which is governed by Bayes’ rule:
P(B | A)P(A)

P(B)

In many cases, prior probabilities are represented by a distribution p(§) over a parameter of
interest £ € . For a set of observables X1,..., X, the posterior distribution of £ is

L(& Xq,...,Xn)p(&)
L(& X1, ..., Xn)p(§)dE’

P(A|B) =
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where L(§; X1,...,X,) denotes the likelihood, defined as the joint distribution of observations
X1,..., X, given the parameter §. It is well-established (Zellner, 1988) that the posterior g also
satisfies
q, = argmin —Eg[log L(§; X1, ..., X»)] + KL(q || p),
q€P(E)
where P(E) represents the space of probability distributions on E, and KL(q || p) is the Kullback—
Leibler divergence between ¢ and p, defined as:

q(§)
KL(q || p) /Q(ﬁ) log <p(€)> dg.

This formulation casts posterior inference as an optimization problem, where the objective is
to balance the trade-off between two competing terms. The first expectation term represents the
expected negative log-likelihood, measuring the discrepancy between the distribution ¢ and the ob-
served data. The second term KL(q || p) quantifies the information loss incurred by approximating
the prior p with the distribution ¢, therefore favoring distributions close to the prior.

Remarkably, this optimization-based view of posterior inference can be generalized by replacing
the negative log-likelihood with a loss function £, often referred to as a quasi-likelihood. Reformu-
lating the minimization problem as a maximization problem yields:

q, = argmax E,[((§)] — KL(q || p), (19)
q€P(E)

where £(€) = —£(&;X1,...,Xn). Recent studies have increasingly adopted this generalized ap-
proach to updating prior beliefs, as it offers greater flexibility compared to the traditional Bayesian
framework (Bissiri et al., 2016; Fong and Holmes, 2020; Rigon et al., 2023; Agnoletto et al., 2023).
In this context, the resulting g, is referred to as a generalized posterior.

F.2 Gibbs posteriors and annealing

Many Bayesian methods use a Gibbs posterior defined by

_ exp(£(€)/w)p(E)
Jexp(£(§)/w)p(€)dg’

where w > 0. Gibbs posteriors are also commonly referred to as the tempered posterior (Andersen
et al., 2002; Girolami, 2008), fractional posterior (O’Hagan, 1995; Gilks, 1995) or power posterior
(Friel and Pettitt, 2008) and have been utilized in a wide range of statistical methodologies. For
instance, they have been used to incorporate historical data in Bayesian data analyses (Ibrahim
and Chen, 2000), offering a robust, but flexible, mechanism for incorporating prior knowledge.
Furthermore, in scenarios where the model is misspecified, i.e. the true data-generating process lies
outside of the support of the prior, it has been shown that Gibbs posteriors can outperform the
traditional likelihood-based approach in terms of risk minimization (Jiang and Tanner, 2008).

The role of w is clear when comparing (20) with the generalized Bayesian update, derived
from (18). Specifically, w modulates the influence of the information derived from the data relative
to the prior distribution, effectively controlling how fast the model “learns” from the data. This
relationship becomes even more apparent in the variational formulation of the Gibbs posterior,
given by:

a0 (€) (20)

gy = argmax Ey[((€)] — wKL(q || p). (21)
q€P(E)
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Here, if w = 1, (20) reduces to the generalized Bayesian update (19). If w > 1, the loss of
information with respect to the prior is given greater importance than the data. Conversely, when
0 < w < 1, the data is given a stronger influence than in the usual Bayesian framework.

The process of powering up the quasi-likelihood in (20) draws a parallel with thermodynamic
systems in statistical physics, where the probability of the state is given by a Gibbs measure.
For this reason, the parameter w is also commonly referred to as the temperature in the Bayesian
literature, and the process of adjusting the temperature is also called annealing (Geman and Geman,
1984). This analogy underscores the foundational role of w in modulating the influence of prior
information versus new data, akin to controlling the temperature in a physical system.

F.3 Posterior approximation by variational inference

In classical Bayesian inference, the prior distribution is often selected from a family of distributions
that is conjugate to the likelihood function. In this case, the posterior distribution remains in the
same family as the prior, enabling analytical computation of the posterior parameters. However, in
modern Bayesian problems, this assumption of conjugacy is not always feasible. In many scenarios,
the posterior distribution is intractable. To address this challenge, one common approach is to
approximate the posterior by a distribution using a member of a parametric family of distributions
Q. For example, Laplace’s approximation can be used to approximate the posterior with a Gaussian
distribution, providing tractable solutions (Tierney et al., 1989).

An alternative approach uses the variational formulation presented by (21). Consider a Gibbs
posterior g, solving (21) for some value of w > 0. Since the optimization problem defined by (21)
is infinite-dimensional, deriving an algorithm to find ¢, is not straightforward. To overcome
this, one may approximate ¢, with a distribution g, from the parametric family of probability
distributions @ = (qa)aco, solving the constrained optimization problem

@y = argmin KL(q,g,").
q€Q

It is well-established that the solution G, is also the solution of the variational problem defined
by (21), but constrained to the parametric family Q:

Gy = argmax Ey[((€)] — wKL(q || p).
qeQ

Usually, the parametric family Q is chosen to simplify the optimization problem by reducing it
from an infinite-dimensional problem to a finite-dimensional one involving the parameters of the
family. Consequently, an algorithm can be derived to find the optimal parameters

A™Y = argmax E;, [((§)] — wKL(qa || p), (22)
AcO

where the resulting approximate posterior distribution is given by G, = gp=«. This methodology
defines variational inference and the chosen parametric family Q is referred to as the variational
family.

F.4 Link with the initial optimization problem

Our optimization problem (P1) is not a Bayesian problem in nature. However, our approach to
solving it is inspired by the Bayesian principles discussed above. Now, we provide an intuitive
exploration of the behavior of a Gibbs posterior as the temperature parameter w approaches zero.
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From the expression of the Gibbs posterior ¢, given by (20), it can be observed that ¢, in-
creasingly concentrates around the global modes of ¢ when the temperature w decreases. Therefore,
when w tends to 0, the Gibbs posterior becomes a very sharp distribution, resembling a mixture of
Dirac measures centered on the global modes of £, provided all these modes lie within the support
of the prior distribution p. Therefore, the modes of ¢ can be identified by locating the regions where
gy remains non-negligible.

Our objective is to exploit this phenomenon by approximating g, with a Gaussian mixture
model. Provided the number of mixture components is at least equal to the number of global
modes of £, then each component should fit under one of the modes. Thus, the modes of ¢ can
be effectively recovered as the means of the mixture components. To help the convergence of
the variational parameters during the optimization process, we propose the use of an annealing
schedule for the temperature w. In particular, at each iteration ¢, we sequentially fit ¢,**, where
the temperature w; gradually decreases to 0.

Given the absence of a compelling reason to select a specific prior, we opt for a uniform prior
by default. Under a uniform prior, the Kullback-Leibler divergence term simplifies to KL(ga ||
p) = —H(qa), where H(ga) denotes the entropy of ga. It is also noteworthy that with a uniform
prior, the modes of ¢, remain invariant with respect to the value of w > 0, which is a property
that may not hold for other prior distributions.

w

G Natural gradient optimization and information geometry

We recall some properties of the natural gradient and its relation with information geometry,
motivating its use. More details can be found in Khan and Rue (2023).

Limitation of the traditional gradient approach. Let us first examine the (vanilla) gradient
update rule to solve problem (P3b):

A1 = A+ pVALL(A)| A,

which is the update obtained when solving:
. 1
A1 = argmin (VALy(A)[a,, A) + 5—[|A - A3
A Pt

This makes clear that the update is driven by an Euclidean penalty in the parameter space. How-
ever, since the goal is to update A such that ga converges to g, it is more appropriate to use a
penalty based on a distributional metric rather than a Euclidean metric in the parameter space. The
Euclidean distance, which depends on the parameterization, is not an ideal metric for evaluating
the proximity between distributions.

Natural gradients and link to information geometry. As discussed in Khan and Rue (2023),
using a KL divergence penalty leads to the update rule

. 1
At+1 = argj{nln <VA£W(A)|A157 A> + TptKL(QA || QAt)a

which results in (8). Typically, the natural gradient amounts to scaling the vanilla gradient by
the inverse of the Fisher Information Matrix (FIM). However, for mixtures of exponential family
distributions, the FIM associated with the density function ga(€) may be singular. Therefore,
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it is more convenient to define the natural gradient using the joint distribution ga (&, Z) of the
MCEF (5). The natural gradient is then given by (6).

The natural gradient is narrowly linked to information geometry (Bonnabel, 2013). The core
idea behind information geometry is to use the shape of the manifold induced by the set of mixtures
in the space of all probability distributions, which is independent of their parameterization (Amari
and Nagaoka, 2000; Ollivier et al., 2017; Nielsen, 2020). The natural gradient points in the direction
of steepest ascent on the Riemannian manifold with respect to the metric induced by the FIM,
offering a faster convergence in variational inference (Sato, 2001; Honkela et al., 2008; Hoffman
et al., 2013; Wu and Gardner, 2024). This motivates the choice of natural gradient ascent for
solving our optimization problem.

Inexact Riemannian gradient ascent. Natural gradient ascent can be viewed as a form of
inexact Riemannian gradient ascent, as it only uses the first-order approximation of the geodesic
defined by the FIM, i.e. the direction of steepest ascent (Bonnabel, 2013). Indeed, at each iteration
t, the update Ayyq is achieved by taking a step p; forward from A;, following a straight line rather
than the true curved geodesic. However, this approximation is only valid within a neighborhood
with a small radius. Typically, if the step-size p; is too large, the positive-definite constraint of the
precision matrices can be violated. Lin et al. (2020) suggested an improved learning rule (improved
Bayesian Learning Rule, iBLR) using a second-order approximation of the geodesic, which can
be easily obtained in the case of exponential family distributions and their mixtures through a
retraction map. The iBLR update ensures that the precision matrices remain positive-definite. In
this paper, we have also derived the iBLR update rule to solve our optimization problem.

H Identities for gradient derivation

This section proves some identities used in Sections 3 and 4 and Appendix J. They mostly come
from Lin et al. (2019a) and Carreira-Perpindn (2000).

Proposition H.1. Let gg(&) be a probability density function parameterized by 0 € ©. We have

VoEq, [log g9(£)] o=, = / log qa, (§)Vaqs(&)]0=0,d§ = VeEq, [log qo, (&)]]o=0, -

Proof. The result is obtained when developing

VoEqg, log go(€)]lo=0, = / Vo (q6(€)10g qo(£)) l9=a,d€
— [ (Voa0(€)lo=a,) 108 a0 (€)d€ + By, [V 1o a0(©) oo
:/IOgQGo(E)VGQG(ENBGodEa

where we have used the fact that Eg, (Vo logqo(&)lo=0,) = | Vaga(&)lp=g,d& = 0. O

Proposition H.2. Let £ € RY. We have
VN (& p,B) =376 - N (&, D),
VsN(&p,3) = % ZHe-wE-'=" -2 NERD).

33



Proof. We have

1 1
P, ) = — € —nl% ¢
The first equality is obtained after remarking that V,,|& — p||% = 2271 (€ — p).

For the second equality, we have to use the fact that Vy det(X) = det(X)X~! and that Vg ||€& —

plg=-2"1€ - )& — )=, so that

1 1

VSN (€ D) = 5 Vs den(2) o { - e - s}
1 1

+ 2n) i det(2)1/2vz exp {—2||€ - H||22}

det(E)E_l 1
T (202 x 2det(z)32 {—2||€ - ull%}
SHE-w(E—wTET |
er) T2 det(D)1 2 x2 P {—2H£ — MH%}

- RN W - WS - BN (E D).

O]

Proposition H.3. Let qa(€) = Sr, ax, (€) where for all k € [K], qx, (&) = N(&; py,, S, 1). For

allk € [K], let ri(§) == mran, (§)/qa (&) and, in addition, for alll € (K], Aup(&) := Se(p,—&) (101, —
&)T'Sy. Then, we have

M=

Velogqa(§) = ) i(€)Sk(py — €),
k’]:(l p
Vilogqa(€) =) rr(€) |Ark(€) — Sk — > re(€)An(€)
k=1 =1
K
= — (Velogqa(€)) (Velogqa ()" + > mu(€) [Ark(€) — Sil.
k=1
Proof. Let us first write that, by Proposition H.2,
Vear,(€) = VeN (& s S 1) = VeN (i €, S;71) = Sk(py, — €)an, (6)- (23)

The first identity comes from (23), as we have

K K
Velogaa(@) = Y m> () > D) 51 - 6).

k=1 q

In order to obtain the second identity, we can differentiate the first identity and use (23) again,
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so that

Vilog qa ()
o {wsk(uk—s)qu(s)) _ Vean(®)ar, (€ — &) Sk}
2 aa(€) 4n(€)?
K K
N D8 [ Ve O =TSk o N~ Vean, (&) — )" S)
= L onte) { (6 Se= 2 M }
_i ) [ g e — 7S, S _i € g o eg
= 2 Tk a(€) B py — &) Sk k 2 v aa(€) o(y — &) (g — &) Sk ¢ -
This also implies the alternative form of the second identity, by remarking that
(Velogar(€) (Velogar(€)” = 33 mer (DuE DI S, 11, ) — €7 S
k=1 (=1

I Bonnet’s and Price’s theorems

In this section, we recall Bonnet’s and Price’s theorems (Bonnet, 1964; Price, 1958; Opper and
Archambeau, 2009; Rezende et al., 2014; Lin et al., 2019a), formulated as consequences of Stein’s
lemma (Stein, 1981). Trading generality for clarity, the following statements require stronger, but
simpler assumptions than in Lin et al. (2019b).

Theorem 1.1 (Bonnet’s theorem). Let f : RY — R be a continuously differentiable function and
q(&) =N (&, X) a multivariate Gaussian distribution. We have

Vg [f(&)] = Eq[Ve f(€)].

Theorem 1.2 (Price’s theorem). Let f : R? — R be a twice continuously differentiable function
and q(&) .= N (&, X) a multivariate Gaussian distribution. We have

VsE[f(€)] = Eq[VEf(€))-

J Computation of natural gradients

In this section, we derive the natural gradient update rules and the gradient estimators for the
variational mixtures, including when they are Gaussian mixtures (Sect. 3 and 4).

J.1 Natural gradient update rules for the mixture parameters

In the case of Gaussian mixtures, we have the natural parameters Ay, = ()\,(61), /\(2)) (Skpy, —Sk/2)

and the expectation parameters M} := (m,(:)7m,(f)) = (mppty, T(Sy ' + pppl)) (see Lin et al,

2019a for details). Using the chain rule, it comes

V0 £ol8) = = (Vi Luld) = 2V g Lu(A)i)

7rk

V0 Lu(A) = Evsglzw(A).
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Using (7) and substituting these gradients into the natural gradient update rule (8), we derive
update equations for the parameters p;, S and mg:

2
ft Vs Lo(A)a,,

)

Skt41= Skt —
Mrpr1 = My + Pt Sk ,:1+1V Ly(A)|A
Vg t4+1 = Ukt + Ptvwkﬁw( )| A,

where vy ¢ 1= log (7 + /7K 1)

J.2  Expression for V. L,(A)

Proposition H.1 (Appendix H) provides the identity

Vo Lu(A) = / (Vrea(€)) ful€: A)dE.

The gradient with respect to 7 depends only on Vi, ga(§). Since 7 =1 — ZkK:_ll Tk, We have

Vi aa (&) = an, (§) — ane (),

and thus,

Vi Lw(A) = Eqy, [fu(§ A)] = Eqy [0 (& A)]

= B, 5,1 o€ A)] Enru 5 (€ A))- (24)

J.3  Expressions for Vg-1£,(A) and V, L,,(A)

To obtain the gradients with respect to the means and the precision matrices, we use Proposition H.1
again:

Vo £uld) = [ (Vs 10a(0)) ful6: ),
Vi Lu8) = [ (V00 (€)) £u(6: M)

These expressions lead to a few equivalent identities, from which different estimators can be sug-
gested.

Black-box method. Proposition H.2 provides expressions for the gradients derived from direct
differentiation of ga (&) under the integral with respect to S, L and pi. The following expressions
are obtained:

V1 LalA) = T By, o) [(Sk(€ = 1) (€ = )" Sk = S1) ful& A)), (25)
Vi Lo(A) = ThBy(,, 601 [Sk(€ — i) fu €5 A)]. (26)

These expressions are consistent with those given in Section 2 of Wierstra et al. (2014) for the
natural gradient with respect to a Gaussian distribution.
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Bonnet’s and Price’s theorems. Instead of differentiating ga (&), Bonnet’s and Price’s theo-
rems (Price, 1958; Bonnet, 1964; Lin et al.; 2019b) can be used to find alternative expressions for
these gradients. We recall these results in Appendix L. In fact, this amounts to a reparameterization
trick, using the properties of the Gaussian distribution to transform the gradients with respect to
the parameters into gradients with respect to &, and then performing integration by parts:

Tk

Vit La(A) = DBy, 5o [SHE — 1) Veful& A)) (27)
Vi, Lo(A) = WkEN(uk,Sgl)[véfw(E; A)]. (28)
An alternative expression for V Sk_lﬁw(A) can be obtained by integrating by parts once more:

U
A more detailed derivation for these expressions is given in Lin et al. (2019a), Appendix B.2.

J.4 Estimation of the gradients

The gradients expressed in the previous section can be estimated using Monte Carlo approximations
from simulated samples. For some ¢t > 1, B > 1, for all k € [K], let £gk), e g) R N (g, S’,;})

Estimating V , £,(A)|a,. We propose the following estimator for V, £,(A)|a, defined by

B
= =3 (& A0 — £ul&500) (30)

b=1

U:J\H

Vi Ly (A)la, = % At,B =
which is unbiased and consistent from (24).

Estimating V,,, £,(A)[a,. We propose two estimators for V,, £,,(A)|a, of the form V/M\kﬁw(A) A, =
Tk t'yc(uulkxi B = Tk, 78‘,]{; )Bv i € {0,1}, where

FUwO = *Sktz ) ) Fu (€ A, (31)

and

U, = ngfw (€M Ay, (32)

lead to unbiased and consistent estimators from (26) and (28) respectively.

Estimating Vsqﬁ (A)|a,. We propose three estimators for vsk—lﬁw (A)|a, of the form V/S;E (A)|A, =

(Sil A(Sk )
Tkt Y0 Ay, 3/2 = TtV AtB/Q i € {0,1,2}, where

B
)
T = 2800 S (€ — (€D — 1) Sk~ 1) fulEl: AL, (33)

b=1
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!
TohB = meZ ) Velu €D A, (34)
and
~(8, 2) o 2 (k)
VohiB ngmsb T A, (35)
BiS
lead to unbiased and consistent estimators from (25), (27) and (29) respectively.

Computability of V¢ f,, and Vwa. From Proposition H.3, the quantities log ga (&), V¢ log ga (§)
and Vz log ga (&) can be exactly computed. Therefore, the computability of the derivative of f,
only depend on the computability of the corresponding derivatives of /.

K Stochastic natural gradient ascent algorithm

This section gives the stochastic natural gradient ascent algorithm in the general mixture case
(Algorithm A).

Algorithm A: Stochastic natural gradient ascent for mixture of exponential family vari-
ational approximation (SNGA-M)

1 GIVEN a function ¢ and a value for w.

2 SET T, B, K, AQ, (Pt)lgth-

3 COMPUTE (v ) = (log(ﬂ'k,o/ﬂ'l{,t))ke[[ﬂ-
4 fort=0:(T"-1) do

5 for k=1:K do
6 SAMPLE E,()k) B ., forb=1:B.
7 COMPUTE mw(At)-
8 UPDATE A 41 = Apt + ptV/M\kﬁw(At).
9 end
10 for k=1:(K-1) do
11 COMPUTE ij’?ﬁ’t, B
12 UPDATE Vg t41 = Ukt + Pﬁu(;?x)t,B
13 end
14 end

15 COMPUTE (Wk,T)kE[K] from (Uk,T)kE[K]'
16 return Ar.

L. Behavior of a single Gaussian parameters when annealing

In this section, we provide the proof of Proposition 4.1, stated in Section 4.1.

Proof of Proposition 4.1. For some t, the parameters of ggrw: = N(p, (ST ~1) minimize
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KL(qG’wat [| gw,).- They can be found by solving the equation system

Vi, KL(gp, || g) =0
V-1 KL(gp, || 9) =0

We also recall that

KL(so, || 02) = ~Hlao)) ~ Esg, |1 10 2(0)].

where H(qg,) = d(1 + log(27))/2 — log(det(.S))/2.
First, we prove that solutions (qg?wt )i—00 converge to a Dirac measure centered on £* as t — oo.
Using Price’s theorem (Appendix I), we have

w

1 l
VS;1KL(QQ1 H gw) = —551 - stlqul |:(f):| = —751 — K

vzas)] |

So for all t > 1, S7“* satisfies

*,W 1 2
814 = = By sy V)]

Because / is strictly concave, the eigenvalues of —VEE(E) are strictly positive for all £&. This implies
that the eigenvalues of any S} cannot be bounded over ¢ because wy P 0, so we deduce that
— 00

*,wt\—1
(S 52 0

Furthermore, using Bonnet’s theorem (Appendix I), we have

V1 KL(g0, || ) = ViEqp, [gff)} _E,, [Vgﬁ(ﬁ)} |

w

Wt

Therefore, py™"* must satisfy

By (spen-n) Vel (€)] = 0.

*,Wt

Since &* is the only critical point of ¢ and (S7**)~! = 0, then we have g == £*. We
—00 — 00

also deduce that the sequence (qe?wt )e>1 converges weakly to the Dirac measure centered on £* as
t — oo.
Finally, we use this weak convergence result and the following expression, already shown above
1

Sik,wt — _OTtEqGI'Wt [Vzé(f)] )

to conclude that
WtSik7Wt E} —VEE(E*)

M Behavior of Gaussian covariance matrices when annealing

In this section, we will see how S, ~ —w_1V§£(£,’;) for all k € [K]. We use the notations of
w—

Section 4.1. First, we prove a preliminary result.
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M.1 Component separation and entropy approximation lemma

The following lemma show that if the components of the mixture are separated, then the entropy
of the mixture can be approximated by a sum of entropies associated to the components. In order
to prove the validity of the approximation, we will pick a Gaussian mixture where components have
fixed means and vanishing covariance matrices. We assume that the eigenvalues of a covariance
matrix are decreasing to 0 uniformly within itself but also with respect to all the other covariance
matrices.

Assumption M.1. We assume that there exists

e a positive function ¢ : h— ¢(h) with ¢(h) 1o,
—00

o for k € [K], a matriz Ey,

such that
¢(h)Eg(h) —— Ey.

h—o00

Let ag1(h) < -

<
and analogously, Br1 < -+ < Biq the ordered eigenvalues of E,i/z. A consequence is that for all
1 <1t <d, we have

ar.a(h) denote the eigenvalues of Ty (h)Y/? ordered in increasing order

(h)aki(h) —— Br-

h—o0

Lemma M.2. Suppose that the mizture parameters A are constant except for the covariance ma-
trices X (h), for k € [K], converging accordingly to Assumption M.1. Then

K K
Hlaa) ——— H(ga) == =Y _melogm + > mH(qn,)-
k=1 k=1

Proof. Let uppr := ||y, — ppr|l, /(1 + HE,;UZE}C,/ZHOP) where || X||op is the operator norm of X,

given by its largest eigenvalue.
Theorem 4.2 of Furuya et al. (2024) states that for s € (0, 1), we have

K
- . K 2 —SU k/
[H(qa) — H(ga)| < min 9 m Z Z VTETR €XP < 4 >

k=1k'#£k

—-1/21/2 _
But we have || "*5/%|lop < awa(h)ar1(h) and [y, — pulls, > |y, — poll20ka(h) 7", s0 that

e, — 1l [l — pp ]2
Uk ! > ~h oo O(h ~+00.
S (h) + awa(h) " #lh) B + Brrd  h—oo
Therefore, we can conclude that [H(qa) — H(qa)| = 0. O
—00
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M.2 Asymptotic behavior of Gaussian covariance matrices

Now, we can explain how S;* ~ —w_lvzﬁ(f’};) for all k € [K]. If "% — 0*Y as w — 0, then
w—

for a sufficiently small w, 8%* is a mixture of very sharp Gaussian components, as their covariance
matrices vanish when w — 0. Following Lemma M.2, this implies that below a certain threshold of
w, the entropy of gg=«~ can be approximately decomposed as

K K
H(go ) ~ — Z o logm Y + Y mUH(0,Y).
k=1 k=1
Therefore,
K
E s [0E)) + wH(dgr) ~ D 1 By [UE)] - wHlag) )
k=1

This indicates that, for sufficiently small w, problem (P4) can be nearly decomposed into K sepa-
rated problems
6, € argmax Eq, [((€)] +wH(qe,)-
k

Given that 8 — 6" as w — 0, this suggests that in the mixture approximation problem (P4),
if the components are well-separated and close to the modes of ¢, then the behavior of each individual
component will resemble that in the single-mode case as described by Proposition 4.1, hence, for
all k € [K],

S ~, —w V(&)

w—
While this conclusion is based on theoretical considerations, its practical utility will be demon-
strated for the choice of algorithm hyperparameters, more specifically the learning rate (see Ap-
pendix O.5).

N Interpretations of the NVA-GM algorithm

NVA-GM implements a natural gradient method to solve a variational problem, with an annealed
objective function. The core idea presented was that in fitting a Gaussian mixture, each Gaussian
component is likely to adjust to a location where the objective function is high in order to favor a
high expectation in (P3). If there are as many modes of ¢ as components in the Gaussian mixture
(K = I), then we hope that each Gaussian component takes responsibility for one mode of /.
Alternatively, we can look at this algorithm from other perspectives.

N.1 Particle interpretation

Khan and Rue (2023) proved that the Bayesian Learning Rule, consisting in solving the approximate
Bayesian problem (22) with w = 1, using a variational family from the exponential family and
natural gradients, can lead to classic optimization algorithms such as stochastic gradient algorithms
and Newton—Raphson’s method. These algorithms iteratively update the position of a particle until
convergence to an optimum. For example, in the case of Stochastic Gradient Ascent (SGA), the
updates are of the form

£t+1 =& + Ptvg(@a

where /() is the function to be maximized, and &, is expected to converge to a local or global
maximum of ¢. Conceptually, the particle is subject to the potential ¢, generating a driving force
V/, directed towards the sinks of the potential, i.e. the maxima of ¢.
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When the variational family in (22) is restricted to Gaussian distributions with fixed covariance,
the optimization is only performed on the mean p of the Gaussian. In Khan and Rue (2023), it is
shown that a delta-method approximation of the natural gradient leads to the update rule

By = By + peVE(py).

Thus, the trajectory of the mean (p;):>1 of the Gaussian distribution is completely equivalent to
the trajectory of the particle (§;);>1 in the SGA algorithm.

This analogy can be extended to Gaussian mixtures by considering the component means as
individual particles, each moving according to forces generated by potentials. From this perspective,
a Gaussian mixture with K components can be viewed as a system of K particles with locations
(Kkt)kek) at time t, with the goal that they converge to the sinks of the potential £. In our
situation, the function to optimize at each iteration ¢ is L, (A) = Eq, [fw,(§; A)], which can be
interpreted as an average of a general potential f,, (&; A) (where € ~ ga). This general potential
can be decomposed into two components:

fo(&A) = L&)  + wex (—logqa(§)) - (36)
~— —_——
driving potential repulsive potential

To clarify the role of these two potentials, recall that the gradient of £, (A) with respect to p,
is given by equation (26), which shows that the gradient is the weighted average of vectors (& — py,)
where & ~ N (py,, Sk) is sampled symmetrically around g, with weights determined by the poten-
tial f.,(&; A). The decomposition of the potential makes it clear that ¢(£) contributes positively
to the weight, whereas log ga (§) contributes negatively. Consequently, the driving potential directs
the gradient towards regions where ¢ is high, whereas the repulsive potential pushes it away from
regions where ga is high, i.e. away from the other component means of the mixture. Therefore,
the covariance S} L of a component determines the strength of this repulsive force. Whereas the
individual covariance affects the repulsion force of the particles individually, w; can be seen as a
parameter setting the strength of the repulsive potential of all particles. This is analogous to many
setups in statistical physics, where temperature influences the interparticle forces (Israclachvili,
1992).

If the aim of the algorithm were only to let the particles converge to the sinks of ¢, the driving
potential alone would achieve this. However, the inclusion of the repulsive potential, induced by the
entropy term, forces the particles to spread out, which is crucial when we want them to converge
to different sinks. A discussion on how one should balance the potentials over time through the
specification of an annealing schedule is given in Section 4.4.

N.2 Evolutionary interpretation

Evolutionary algorithms represent a class of black-box optimization algorithms. To optimize a
function, called fitness function, with respect to certain parameters, these algorithms generate a
population of individuals in the search space. Each individual is assigned a fitness value, typically
the function’s value at the parameters represented by that individual. At each iteration, a new
generation of individuals is produced through a process that simulates mechanisms of natural
evolution, specifically mutation, and selection. The mutation step involves randomly perturbing
the current population to explore the parameter space, while the selection step uses the fitness
values of the current population to generate new individuals with higher fitness, therefore focusing
on already explored regions of the parameter space.

A subset of evolutionary algorithms, those within the Information-Geometric Optimization
framework (IGO, Ollivier et al., 2017), maintains a connection with gradient-based optimization
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methods. Notably, the Natural Evolution Strategies (NES, Wierstra et al., 2014) use a parame-
terized search distribution to generate populations. The parameters of this search distribution are
updated based on an estimate of the search natural gradient, i.e. the natural gradient of the fitness
function with respect to the search distribution. At each iteration, a new population is sampled
under the current search distribution (mutation step), and these samples are used to estimate the
search natural gradient, directing the search towards regions of the parameter space with higher
expected fitness (selection step).

Our natural gradient algorithms exhibit analogous principles. At each iteration, it samples
locations from each Gaussian component N (g, S; 1) of the mixture. The covariance matrix S, !
can be interpreted as the mutation strength for the corresponding search distribution, defining the
dispersion of the samples. These samples are used to update the components from which they were
drawn, by computing natural gradients. Thus, each component acts as a search distribution. Thus,
the mixture induces K search distributions, enabling the identification of up to K distinct solutions.
However, these search distributions are not updated independently, but they are interdependent
due to the entropy term in our objective function, which involves the whole mixture. As seen
earlier, the entropy term promotes spatial diversity between the components. Consequently, rather
than acting completely independently, the different search distributions collaborate to find distinct
solutions, with the temperature w; setting the strength of the collaboration. In the limiting case
where w; = 0, the search distributions are updated independently.

N.3 Interpretation of the annealing schedule

In this section, we analyze how the value of w influences the behavior of the system of particles
formed by the component means, particularly in terms of exploration versus exploitation. We
identify and discuss two distinct regimes: when w is very small and when w is very large. We will
then provide guidance on how to navigate between these two regimes to ensure that the particles
behave well to solve our optimization problem.

Full-drive regime. We argue that when w is too small in SNGA (Algorithm A), several particles
are likely to converge to the same mode. To understand this, consider a scenario where w = 0 is
sufficiently small so that the objective function can be approximated by this decomposition:

K
Ew(A) ~ Z Trk:Equ [6(5)]
k=1

In problem (P3), the entropy penalty, by introducing a repulsive force between the particles, pre-
vents the optimization problem to be separable into K independent optimization sub-problems for
each particle. However, when the entropy term is negligible, we can separate it: for k € [K],

Ak = arg}r\nax Eq, [4(8)].

Thus, setting a very small value for w amounts to running K parallel optimization algorithms.
The result depends heavily on the initial parameters, like in most gradient algorithms, and the
mixture components converge independently. In particular, the update for the component means
(the positions of the particles) is identical for all k € [K], i.e.

a1 = B + 06V pBa s 1) LE)] (10,8) = (g 1, S00)-

Because all the particles follow the same dynamic, they are likely to converge to the same mode
if their initial positions are close. Similar to classic gradient ascent, the landscape of £ can be
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partitioned into basins of attractions associated with the potential’s sinks (the modes), where a
particle initialized within a basin is driven to the corresponding sink. To ensure that particles
converge to different modes, they must be initialized in different basins of attraction. However,
even if we knew the number of modes in ¢ and their approximate locations, the exact boundaries
of the basins are unknown, especially when there is no prior information on £ available. Setting the
initial positions in well-spread locations of space might mitigate the problem in low-dimensional
spaces, where there is a higher chance that they fall in different basins, but this becomes almost
impossible in high-dimensional settings (for example d > 3), where the shape of these basins are
more complex. This shows why using Algorithm A with a small w is not suitable to find distinct
solutions.

Equilibrium regime. When w is non-negligible, the entropy term in (P3) plays a critical role
in preserving component separation. Entropy is maximized when a distribution is uniform. For a
Gaussian mixture, this implies that its entropy is higher when the mixture components are spread
out, meaning the means are distant from each other and the variances are large. Recall from
equation (36) that the potential governing the dynamics of the particles can be decomposed into
two parts: a driving potential and a repulsive potential.

The gradient pulling the component means towards the modes is fully determined by the driving
potential. Because the repulsive potential between the particles counteracts this driving force, a
non-negligible w prevents them from converging to the sinks. Instead, they converge to an equilib-
rium state where the driving force is compensated by the repulsive force, i.e. a set of parameters A
where f,(&; A) is constant. Therefore, with a large w, convergence of the particles is inconsistent,
as the final locations of the means are not at the modes of ¢, but rather at an equilibrium between
the two potentials. Therefore, using Algorithm A with a large w does not allow us to find the
modes of £. However, this repulsive potential can be used to force spatial separation between the
particles, allowing them to escape one basin of attraction that is already occupied by one and move
to another.

Exploration versus exploitation. Ultimately, we want the component means to converge to
the modes of ¢, and only canceling the repulsive force (w =~ 0) would achieve this. However, this also
makes it likely that multiple means converge to the same mode. On the other hand, the repulsive
force keeps particles spatially separated and encourages them to explore other regions of the search
space, but it also prevents them from reaching the modes. The idea behind the annealing schedule
in NVA-GM is to initially force the particles to spread out and explore the search space by setting
a strong repulsive force (large w), then gradually transition into a regime where the particles are
fully subject to the driving force by decreasing w over time.

To some extent, we can say that the annealing schedule is similar to an exploration-exploitation
strategy, a classic analogy in applications of annealing that has already been used in optimization
(Huang et al., 2018; D’Angelo and Fortuin, 2021b). Ideally, during the exploration phase, one
should prioritize spatial separation of the components and exploration of the landscape of £. Then,
w decreases, and the driving potential should progressively dominate the overall dynamics, until
reaching a pure exploitation phase, where the particles are only guided by the landscape of £. The
transition phase allows the particles to be attracted to regions with high values of ¢ while still
preserving some spatial separation. If the transition is slow enough, the particles are more likely
to discover different basins of attraction, leading to convergence to distinct modes.
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Setting an annealing schedule. Originally, w is used to set the target g, of the optimization
problem, like in Section 3. To implement annealing in Algorithm 1, a piecewise-constant decreasing
schedule can be defined. First, set w to a large value w; and let the algorithm run until A***
is reached. Then, reduce w to a slightly smaller value wo < wi, find A®*? and repeat until
A*¥S ~ A*¥S-1 This approach essentially restarts the algorithm after convergence with a fixed
w, using the previous result as the initial condition for the next run.

However, this approach has several drawbacks. First, a criterion for convergence must be estab-
lished before restarting with a new w. There is no general guideline for choosing a relevant criterion.
More importantly, because it is preferable to decrease w slowly to ensure convergence to distinct
modes, the algorithm needs to be restarted many times (.S is large), which is computationally costly.

Given that setting w can be interpreted as balancing exploration and exploitation behaviors of
a mode-finding algorithm, then from this perspective, restarts are not necessary: there is no reason
to wait for convergence to adjust the value of w. Thus, it makes sense to consider any sequence
(wi)¢>1 such that wy — 0 as ¢ — 0 as a valid annealing schedule. The challenge lies in finding the
optimal annealing schedule. To prevent component means from converging to the same modes,
the annealing schedule should begin with large values of w and not decrease too quickly to 0. In
practice, we aim to use the smallest starting value possible and decrease it as quickly as possible, all
that while ensuring convergence to distinct modes, therefore saving computation time. An example
of annealing schedule is given in Appendix O.4.

O Hyperparameter tuning for NVA-GM

The NVA-GM algorithm (Algorithm 3) is governed by several hyperparameters, including the
maximum number of iterations 7', the mini-batch size B, the number of components of the mixture
K, the initial parameters of the mixture 6y, the annealing schedule (w¢):>1 and the learning rate
(pt)e>1-

The hyperparameter T can be set similarly to other classic optimization problems: increasing T
allows the algorithm to perform more iterations and move closer to the solution but at a computa-
tional cost O(T'). Additionally, one may incorporate a stopping criterion to reduce this cost, such
as stopping the algorithm when Zi{:l [£er 1 =t 4—1ll2 < € for some value of €, which introduces an
additional hyperparameter. The focus of this section is to discuss the choice and the effect of the
remaining hyperparameters, with relevant insights and examples provided.

O.1 Number of components

The number of components K represents the maximum number of solutions (modes) that can be
identified by our algorithms. If K is less than the number of (global) modes (K < I), then a
single run cannot capture all the global modes. Conversely, if K > I and all the global modes are
identified with K components, then the remaining components will either converge to local modes
or to some of the global modes already found. Indeed, although the ideal solution gg is a Dirac
mixture concentrated on the global modes of ¢, the smoothed version g, retains both global and
local modes of ¢, even though the local modes are less pronounced and therefore harder to detect.

If all the global modes are already captured by a component, then the remaining components can
potentially converge to local modes due to the entropy term, which promotes separation between
components. However, if no local modes are available, these remaining components will converge to
already occupied (global or local) modes. However, more importantly, the weights (&;);c() assigned
to the modes, specified in gg, remain unchanged: the combined weight of components converging to
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a global mode & converges to ¢;, while components converging to local modes will see their weights
vanish.

In some applications, such as Bayesian inverse problems (Stuart, 2010) or optimal experimental
design (Long, 2022), finding local modes in addition to the global modes may be of particular
interest. Nevertheless, global and local modes can be immediately distinguished by examining the
component weights or evaluating ¢. Thus, even if local modes are not the primary focus, identifying
them is not problematic since they can be easily recognized and disregarded. The main downside
of choosing a larger K is the additional computational cost associated with processing the extra
components, which are not useful when the goal is only to find the I global modes.

In general, without prior knowledge of the exact number of modes I, it is generally advisable to
slightly overestimate K to ensure that K > I, provided that this remains computationally reason-
able. Although the number of parameters in the mixture scales linearly with K, the complexity of
the algorithm is not strictly linear in K. Actually, the computation cost would be exactly O(K) if
w = 0, as this case allows for independent parameter updates across components. However, when
w > 0, the evaluation of the gradient depends on the entropy term which involves the parameters
of all components, therefore increasing the cost. Thus, the complexity of the algorithm becomes
O(Kp(K)), where p(K) reflects the gradient evaluation cost, depending on the estimators used.

Specifically, for the NVA-GM algorithm (Algorithm 1),

—1
e in ’YSTX j%, 'yL(U“/’“&’B), and 'yi) A 30)7 @(K) is the cost of computing log ga (&) in f,(&; A), which is
O(K),

e in 'y(“’“’ ) and 'YLKI;)

also O(K),

, @(K) is the cost of computing Velogga(§) in Ve fi,(§; A), which is

-1
e in f’)\/fj’;’;), ¢(K) is the cost of computing V% log ga (&) in ngw(g; A), which is O(K?).

0.2 Mini-batch size

The mini-batch size B is the number of samples used to compute the gradients. Larger values of B
lead to more accurate gradient estimates, though at the cost of increased computation time. Indeed,
the variance of the gradient estimators decreases asymptotically with B~', while the computational
complexity scales as O(B). Alternatively, from an evolutionary perspective, B can be viewed as
the size of the population sampled by each search distribution.

In Algorithm 3, the samples must also be sorted before computing the gradients with utility
values, which results in a complexity of O(Blog B) (assuming a merge-sort algorithm). However,
in practice, the effective time required for sorting is generally negligible compared to gradient
computation, unless B is very large.

It may be relevant to use a dynamic mini-batch size, varying over time according to a schedule
similar to those used for w and p. For instance, a smaller mini-batch at the beginning of the run
sizes can improve exploration thanks to the inherent stochasticity in the Monte Carlo gradient
approximations. Although our algorithms can be easily modified to accommodate a dynamic mini-
batch size, for the sake of clarity, the rest of the paper will assume a constant mini-batch size.

0.3 Initial mixture parameters

The initial parameters @y consist of the initial mixture weights (71,0,--.,TK,0), the initial means
(1055 M), and the initial covariance matrices (S14 00 Sl
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Initial mixture weights. The weights of the search mixture do not influence the parameter
updates. As shown in equations (9) and (24), the weight increments are independent of 7, ;. Simi-
larly, although 7, appears in the update equations for the mean locations (14) and the covariance
matrices (13), it cancels out with the gradients as shown in equations (25) to (29). Therefore, the
behavior of the algorithms is not fundamentally affected by the choice of the initial weights.

Any positive weight vector summing to 1 should suffice. It takes fewer iterations for the weights
to converge if their initial value is close to their limit. However, in general, we cannot predict
which component will converge to which mode and we have no prior knowledge about the limit
of the weights. Thus, it is reasonable, although not critical, to initialize the weight uniformly,
ie. mpo=1/K for all k € [K].

Initial covariance matrices. In contrast, the covariance matrices play an important role in
two ways. First, they determine the dispersion of the samples used to compute the gradients.
Samples give information about the landscape of the objective function. If the eigenvalues of the
covariance matrices are too small, then the algorithm will sample points only near the means,
limiting exploration. Second, the update equation for component means in the natural gradient
approach (14) implies that

Pt _
[k e41 — Hpllz = mllsk,iﬂvukﬁw(A)IAtHz‘ (37)

One can remark that the size of the jump between p, , and py 4y is regulated by the eigenvalues
of S . g 41+ Since we have explained in Section 4.1 how they are expected to vanish, this means that
the algorithm can converge prematurely not because the means have reached stationary points, but
because the eigenvalues have become too small. Picking larger initial eigenvalues for the covariance
matrix helps avoid this issue.

Without prior information on ¢, there is no reason not to pick isotropic Gaussian components.
Therefore, we can reasonably set S (1] = o3I for all k € [K], where o, which should be large
enough, can be picked by trial and error.

Initial means. In classic gradient algorithms, such as gradient ascent or Newton—Raphson’s
method, the initial position of the particle is crucial because it may determine the (global or local)
mode to which it will converge. Our algorithms also rely on gradients, but the entropy penalty in
the objective function mitigates poor initialization by forcing separation between the components.
Therefore, as long as there are enough components and with a well-chosen annealing schedule
(Appendix O.4) and learning rate sequence (Appendix O.5), the choice of the initial means does
not carry as much importance.
0.4 Annealing schedule
The annealing schedule (w;)1<¢<7 should be designed such that:

e wj is large enough,

e wr is small enough,

o (wt)1<t<T is decreasing slowly enough.

Indeed, as discussed in Appendix N.3, the temperature w governs the overall behavior of the
interacting particle system. The annealing schedule must establish a smooth transition between
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two regimes, each suitable to different phases of the algorithm. At the beginning of the run, a large
w is needed to encourage exploration of the landscape of ¢, while towards the end, w should be
close to 0 to ensure convergence to the correct solutions. The transition process should be gradual
and continuous.

Determining what constitutes sufficiently “large” or “small” values for w, or when a sequence
is decreasing “slowly enough”, is challenging because these factors depend heavily on ¢ and other
hyperparameters such as the learning rate (p;)1<i<7. Our recommendation is to set wy as a smooth
monotonically decreasing function of ¢, parameterized by w; and a parameter « controlling the rate
of decrease. While wr could also be treated as a separate parameter, here it will be determined by
w1, o, and T. A typical example of annealing schedule is w; = w1t™%, where o > 0.

By trial-and-error, suitable values for w; and « can be picked to find the desired solutions.
For instance, if multiple components converge to the same mode, it suggests that w; is not large
enough or « is too large. Inversely, if all the components converge to different potential solutions,
it is important to check if those are the correct solutions by assessing their convergence. This can
be done by resuming the algorithm (effectively increasing T') or by restarting with a smaller w; or
a larger «a to verify if the identified solutions remain stable. If they do, this indicates that wp is
sufficiently small and that the identified solutions are indeed the correct ones.

0.5 Learning rate

The learning rate plays a special role in our algorithm because it is narrowly linked with w through
the precision matrices of the mixture components. Indeed, this can be seen in equation (37). The
dependence of the distance between py; and py;.q on p and L,(A)|a, is classic for gradient
algorithms. The learning rate sets the proportionality constant p;, while the gradient is necessary
for convergence to the correct stationary point. However, here, we notice that the distance also
depends on Sy 1.

In Appendix M, we have conjectured that S, g w{l(—vzﬁ(ﬁ}’;)) where &7, is the mode of

¢ such that ;" == & But, near convergence of Algorithm 2, we have Sy, ~ S.**, which
—00

means that P
Wt K —
g i1 — Bpglls = =—[(=VEl(€R) ™ Vi Lo(A)|a, 2.

Tkt
Since wy P 0, it slows the trajectory of p;, down. As a result, our experiments have shown
—00 )

that with a constant learning rate, the decay in w; can occasionally lead to premature convergence,
therefore preventing py, , from reaching the correct value.

One potential solution is to allow p; to increase to offset the decrease in w;. To select p;
adaptively, we propose defining p; = w, A , where 0 < 8 < 1. In classical gradient ascent (GA),
it is typically recommended to use a decreasing learning rate to facilitate convergence, as a con-
stant learning rate does not guarantee convergence. In our algorithm, setting 8 = 1 effectively
corresponds to a constant learning rate in GA, since p; fully compensates for the effect of w; in
the updates of p;. Therefore, we suggest selecting a lower value for 3, such as f = 0.8 so that
Pt = w;o'g, to only partially offset the impact of w;.

P Gradient computation and estimation in FS-NVA-GM

In this section, we derive the natural gradient estimators needed in FS-NVA-GM, the fitness-shaped
version of NVA-GM.
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Following the derivation approach in Appendix J.1, we obtain the following update rules for p,
and S}

2/0t

Skae1 = Sha =~ V1L a0 (M)

Akt

ﬂt 1
,Uk,t-i—l:ﬂk:t WktSkH'lv ﬁ (wAt)( )‘M,t-

) Ak St

For these updates, like in Appendix J.3, Gaussian identities yield the following gradient expressions

Tk wA
Vs 1Ly enn(A) = e B [(S(E = m)(E = TS — WM (€ A))]
k,t
Ld,At
Vi ﬁWg;t 1(A) = Tt B, 5-1) [S(E —H)Wikﬂt J(fur (& AD)] -
Finally, for an arbitrary mini-batch size B, let u = (up)1<p<p be the utility values asso-

ciated to w of (15). The gradients can be estimated by sampling B locations &,...,&p R

D = N (B4 S,;tl) and sorting them as &1, ..., §(p) such that f,(§q), At) > - > fu(§p), At).
According to Theorem 6 of Ollivier et al. (2017), consistent estimators for the gradients are

~(m) vy _ ~(S¢
\Y4 £W<w a0 (N ng, = ThaV ) K, o, and VS—lﬁwiz,At)(A)‘)\k’t = TkaVg A, u/2 where:

EJAt, : *Sktz — M) U, (38)
Do *S LI | 39
UJAt, ktz E(b ~ P (f (b) Byi)" Sk Up- (39)

Q Choice of utility values

In this section, we discuss the choice of utility values u, or alternatively, of a weighting scheme
w, in the FS-NVA-M (or FS-NVA-GM) algorithm, in relation with the literature in evolutionary
algorithms.

In most implementations of the NES or the IGO framework, the choice of the utility values
is typically arbitrary. While Wierstra et al. (2014) empirically observed that this choice does
not significantly impact algorithm performance, Beyer (2014) demonstrated that it could strongly
influence the behavior of the optimization process by analyzing the ordinary differential equation
governing the dynamics of these algorithms. However, this impact is dependent on the specific
fitness function, making it impossible to generalize. In the absence of prior information, defining
an optimal u or w is not feasible. Below, we present several common choices for w, or alternatively
u.

A natural selection rule in evolutionary algorithms is truncation selection, which involves select-
ing a fixed fraction of the current population, representing the samples with the highest fitness, to
compute the next generation. Typically, this corresponds to the weighting scheme w(z) = 1<,
where 1 € (0,1) is the fraction of the population kept. If the population size B is fixed, then the
number of samples selected By = | Bn + 1/2] is constant and the equivalent utility values are

B/BO forleSBO,
Up =
o for By+1<b< B.
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Consequently, the choice of n determines the number of samples effectively used in the gradient
computations. If n is too large, the algorithms may lead to premature convergence. Ollivier et al.
(2017) suggest that n should generally be less than 1/2, confirming the theoretical findings of
Beyer (2001), Jebalia and Auger (2010) and Beyer (2014), who identified optimal values for specific
examples of fitness functions. From a computational perspective, a lower n implies that fewer
samples are used (in fact, n must be at least 0.5/N to select to ensure that at least one sample is
selected), even though these samples have higher fitness. Thus, selecting a low 1 can reduce the
computational cost but at the expense of increased variance in the gradient computations.

While truncation selection assigns equal weight to each retained sample, a variation of this
selection scheme assigns rank-based weights, placing greater importance on the samples with the
highest fitness. Notably, the weights used in the widely used CMA-ES algorithm (Hansen and
Ostermeier, 2001) can be employed as utility values (Wierstra et al., 2014). They are defined by

Blog(Bo-H)—log(b) for 1< b < By
up = S220, (log(Bo+1)—log(c)) S 0 < by, o

0 for B+1<b<B.

Departing from truncation selection, it is important to note that utility values can also be
negative. For instance, Arnold (2006) proved that the optimal utility values for the spherical
fitness function f(&) = —||&* — £]|3 are given by

up = E[Zp)],

where Z(1y > -+ > Zp) are the order statistics of the vector (Z1,...,Zp) with Z, bR (0,1), for
all1<b< B.

Finally, Ollivier et al. (2017) discussed the fact that any weighting scheme w, or vector of utility
values u, can be shifted by an additive constant c¢. While this does not change the expression of the
gradient, it affects its estimation by introducing an additional term with a null expectation. There-
fore, although ¢ does not influence the expectation of the gradient estimator, it can be optimized,
for example, to minimize variance.

R Simulations with degenerate modes

In this section, we present simulation results showcasing the behavior of the mixture weights in
NVA-GM when ¢ has a degenerate mode and a non-degenerate mode. We set d = 2 and £(§) =

»(€1)(3 + 1) where

—(E+3)r -1 for £ < =2,
Y€)= -5+ 32+ 165 for —2<£<2,
—(£-3)2 -1 for 2 < €.

Here, ¢ has two modes, which are both global, at £} = (—3,0) and &5 = (3,0). However, we have
det(—V?24(£1)) = 0 and det(—V?2£(&5)) > 0. Therefore, the mode at £} is degenerate whereas the
one at &5 is not.

We apply NVA-GM with K = 2, using T' = 50, 71,0 = m20 = 1/2, S7) = S50 = I, wy = wy /1>

with w; = 0.1, and p; = 107 (w1 /w;)?8. For the gradients, we use the estimators :/EJ”XB and

(St .
’Yi X ]’32), where B = 4. We recover the positions of the component means and the value of the

weights at each iteration.
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Figure 6: Left: The trajectories of the means in a run of NVA-GM on the function with a degenerate
mode and a non-degenerate mode with K = 2 show that the two components track different modes.
The contour plot represents non-equally spaced levels of £. Right: As expected, the weights of the
component tracking the degenerate modes (1) converge to 1, whereas the weight of the component
tracking the non-degenerate mode (2) vanishes.

Figure 6 illustrates the trajectories of the component means and the evolution of the mixture
weights during a run where each mode is successfully identified by a distinct mean. Although
Theorem 2.2 is not directly applicable to functions with degenerate modes, in the subsequent
discussion in Appendix E, we have provided an interpretation that degenerate modes are “infinitely”
flatter than non-degenerate ones. Consequently, in this run of NVA-GM, it is unsurprising that all
the weight is captured by component 1, which is the one converging to the degenerate mode.

S Black-box optimization benchmark

To our knowledge, the only established benchmarks for multimodal optimization are designed for
black-box optimization methods, using only the objective function evaluation. For completeness,
we thus illustrate the performance of FS-NVA-GM, the black-box setting of which does not resort
to gradients or Hessians. The FS-NVA-GM algorithm is applied to several CEC2013 benchmark
functions for multimodal optimization (Li et al., 2013), which have been used in both CEC and
GECCO niching competitions. Although our framework is designed to locate all modes, the bench-
mark suite targets black-box multimodal global optimization. The benchmark assesses the ability
to consistently find all the global modes of a set of test functions, using only function evaluations.

We use the first six functions of the benchmark suite. Many of these functions exhibit local
optima. The function domains of the benchmark suite are constrained to rectangles of the form
Dap = H?Zl[ai, b;], where d is the input variable dimension. As this is not our current illustrative
purpose, to bypass the need for constrained optimization, we extend all functions to the entire
space R as follows:

f(&) = fla+r(&)) — g€ A(f),

where

o 7(&) = (ri(&))1<i<a and q(§) = (¢i(&))1<i<a and (gi(&),7i(&)) are the quotient and the
remainder of the (generalized) Euclidean division of &; by (b;—a;), i.e. & = q;(&)(bi—a;)+ri(&)
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with 0 < 7;(&) < (bi — a;) and ¢;(&) € Z, for all 1 <14 <d,
o lg()h = i la: (&),
[ A(f) = maX£€D f(&) — mingep f(E)

The modified function f is a “pyramidal” extension of f on the whole space R%. This construction
partitions R? into a grid of rectangular regions, each with the same dimensions as the original
domain Dy p. In each of these regions, the function f is copied but shifted down by a constant,
which increases with the distance of that region from the original domain Dg 3. This construction
preserves the global modes as f in D, but introduces an infinite number of new local modes due to
the repeated, offset copies of f across the extended domain.

We fix an accuracy level € = 0.1, a threshold of the target function below which a mode is
considered found. To evaluate our algorithms, we use the global peak ratio (GPR) and global
success rate (GSR) as advised in Li et al. (2013). The GPR has been defined earlier by (17). The
GSR is given by

H
1
GSR = i ; AGF),,

where H is the number of runs, and for each run h, AGF; = 1 if all target global modes are found,
and 0 otherwise.

We use FS-NVA-GM with CMA-ES utility values, as given by (40). We made slight modifica-
tions to FS-NVA-GM. First, to prevent numerical instability, we enforce a lower bound 7 on the
eigenvalues of the covariance matrices in the search mixture. This is done by adding the following
step after each precision matrix update in FS-NVA-GM:

Skit1 4 (Spiq +70) 7"

The hyperparameter 7 can be seen as a damping factor and can be fixed to a small value, 7 = 10710
in our experiments. Second, we observed that skipping updates of the precision matrices for a few
initial iterations can improve performance. We introduce an additional hyperparameter x, which
defines a burn-in period, i.e. the number of initial iterations before precision matrix updates begin.
Mathematically, these first  iterations correspond to solving the variational problem in the family of
Gaussian mixtures with fixed covariance matrices. After k iterations, covariances are allowed to be
updated. For each run, the initial means are initialized uniformly at random in a rectangle for each
function, containing all global modes, specified in Li et al. (2013), of the form Dgp = [1%,[ai, bi]-
The initial covariance matrices are set to 051, where 02 = ||Dgp/2/2% = maXieqy,..qy (bi — a;)? /4
and the initial mixture weights are set to 1/K. The annealing schedules are defined as wy = wit™%,
and the learning rates are given by p; = p1 (w1 /w;)?, where wy, p1, @, 8 are hyperparameters specified
in Table 3.

In the CEC2013 competition guidelines, a maximum budget in the number of function evalu-
ations is allocated for each target function, which is 50 000 for functions F; to Fj, and 200 000
for Fg. For FS-NVA-GM, the number of evaluations performed during a run is f-eval = BKT. K
is set to the number of global modes to find. Increasing K improves the performance metrics but
raises f-eval. We use B and T to control performance within a reasonable value for f-eval, slightly
exceeding the budget specified in the CEC2013 competition. Under this setting, the benchmark
results (Table 4) show that FS-NVA-GM performs well for simple functions (F} to F5), locating all
global modes in almost every run. For Fg (Shubert 2D function), which is highly multimodal with
18 global and many local modes, FS-NVA-GM finds in average 0.749 x 18 =~ 13.5 modes per run
with our chosen hyperparameters.
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Function [ T

K B w1 « o1 I3 K
F 2 500 2 16 100000 2 1073 0.8 0
Fy 5 2000 5 32 20 1 102 09 0
F3 1 2000 1 32 20 1 100 09 0
Fy 4 2000 4 16 2000000 1.8 10=* 0.7 50
Fy 2 2000 2 16 10000 2 107° 0.8 0
Fy 18 2000 18 16 1000000 1.8 10=° 0.8 50

Table 3: Number of global modes I and hyperparameters used for the first six functions of the
CEC2013 benchmark (F to F).

Function f-eval GPR GSR

B 16000 1.000 1.000
Iy 320000 0.996 0.980
E3 64000 1.000 1.000
Ey 130000 0.990 0.960
13 64000 1.000 1.000

Es 580000 0.749 0.000

Table 4: Number of evaluations of the target function and evaluation metrics GPR and GSR (the
closer to 1 the better) for H = 50 runs of FS-NVA-GM with the hyperparameters specified in
Table 3.
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The results are competitive with some black-box methods. However, we expect FS-NVA-GM
not to be at the same level for more complex benchmark functions, as the NVA-M framework has
been primarily designed to exploit first and second order information. The black-box algorithm
FS-NVA-GM may then be too simple in its current tested implementation, and in particular limited
by the allowed number of function calls.
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