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U -statistics are used to estimate a population parameter by averaging a function on a subsample over all the
subsamples of the population. In this paper, the population we are interested in is formed by the entries of a row-
column exchangeable matrix. We consider U -statistics derived from functions of quadruplets, i.e. submatrices of
size 2×2. We prove a weak convergence result for these U -statistics in the general case and we establish a Central
Limit Theorem when the matrix is also dissociated. We shed further light on these results using the Aldous-Hoover
representation theorem for row-column exchangeable random variables. Finally, to illustrate these results, we give
examples of hypothesis testing for bipartite networks.
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1. Introduction

U -statistics form a large class of statistics with powerful properties. They are built as the average of a
given function on a subsample of a population, called kernel, applied to all the subsamples taken from
this population. The population usually consists of i.i.d. individuals. In this case, Hoeffding (1948)
gives a Central Limit Theorem (CLT), which ensures their asymptotic normality. For non-i.i.d. cases,
similar results (Nandi and Sen, 1963) exist when the population is exchangeable, i.e. when the joint
distribution of a subsample only depends on its size or equivalently for any finite permutation σ,

(Y1, Y2, ...)
D
= (Yσ(1), Yσ(2), ...).

In these cases, it is convenient to view the kernel h taken on each subsample of size k as a random
variable indexed by k-tuple, e.g. Xi =Xi1i2...ik := h(Yi1 , Yi2 , ..., Yik) and the U -statistic is therefore
a sum of random variables. If the population is exchangeable, then the array X is not necessarily
exchangeable, but it is jointly exchangeable, i.e. for any sequence of k-tuples (i, j, ...) and for any
finite permutation σ,

(Xi,Xj , ...)
D
= (Xσ(i1)σ(i2)...σ(ik),Xσ(j1)σ(j2)...σ(jk), ...).

A CLT exists for sums of jointly exchangeable variables, which has been proven by Eagleson and Weber
(1978).

In our paper, the sample consists of the entries of a matrix Y of size m×n, the rows and columns of
which are separately exchangeable (row-column exchangeable, RCE), i.e. denoting Sn the symmetric
group of order n, for any Φ= (σ1, σ2) ∈ Sm × Sn,

ΦY
D
= Y,
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where ΦY := (Yσ1(i)σ2(j))1≤i,j<∞. We consider U -statistics based on submatrices of size 2× 2, that
we call quadruplets

Y{i1,i2;j1,j2} :=
(

Yi1j1 Yi1j2
Yi2j1 Yi2j2

)

.

Their kernels are real functions h such that for any matrix Y , h(Y{1,2;1,2}) = h(Y{2,1;1,2}) =
h(Y{1,2;2,1}). Applied to a matrix of size m× n, a quadruplet U -statistic is then defined by

Uh
m,n =

(

m

2

)−1(n

2

)−1
∑

1≤i1<i2≤m
1≤j1<j2≤n

h(Y{i1,i2;j1,j2}),

where
(m
2

)

is the number of 2-combinations from m elements. We can denote X[i1,i2;j1,j2] :=

h(Y{i1,i2;j1,j2}). However, contrarily to the case where Y is fully exchangeable, X is not jointly ex-
changeable in this case. Our aim is to establish a weak convergence theorem for these U -statistics using
the martingale approach used by Eagleson and Weber (1978).

We apply our results to network analysis. The matrix Y can be seen as a weighted bipartite network,
where the rows and the columns represent individuals of two different types, and the interactions can
only happen between individuals of two different types. Each entry Yij represents the intensity of the
interaction between the individuals i (of type 1) and j (of type 2). As an example, we consider two ver-
sions of the Weighted Bipartite Expected Degree Distribution (WBEDD) model, which is a weighted,
bipartite and exchangeable extension of the Expected Degree Sequence model (Chung and Lu, 2002;
Ouadah, Latouche and Robin, 2021). For binary graphs, the degree of a node is the number of edges
that stem from it. For weighted graphs, the equivalent notion is the sum of the weights of these edges.
It is sometimes called node strength (Barrat et al., 2004), but we will simply refer to it as node weight.
The WBEDD model draws the node weights from two distributions, characterised by real functions f
and g. The expected edge weights Yij are then proportional to the expected weights of the involved
nodes. The model can be written as

ξi, ηj
iid∼ U [0,1]

Yij | ξi, ηj ∼L(λf(ξi)g(ηj)).

where L is a family of probability distributions over positive real numbers such that the expectation of
L(µ) is µ and f and g are normalized by the condition

∫

f =
∫

g = 1. Consequently, λ is the mean
intensity of the network. The two versions of the WBEDD are:

Version 1 λ is constant,
Version 2 λ is a positive random variable.

We explain the implications of the two versions and how our results apply to both of them. Then we
suggest a framework to design statistical tests on these models using our CLT and we discuss how one
can extend it.

Our results are presented and proven in Section 2. In addition to the RCE case, we prove that if
the matrix is also dissociated, i.e. if any of its submatrices with disjoint indexing sets are independent,
then we obtain a CLT. Section 3 gives examples of application of this CLT to hypothesis testing on
networks.
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2. Main result

2.1. Asymptotic framework

Our results apply in an asymptotic framework where the numbers of rows and columns of Y grow at
the same rate, i.e. m/(m+ n)→ c and at each step, only one row or one column is added to the matrix
Y . Now, we build a sequence of dimensions (mN , nN )N≥1 that satisfies these conditions.

Definition 2.1 (Sequences of dimensions). Let c be an irrational number such that 0 < c < 1. For
all N ∈ N, we define mN = 2 + ⌊c(N + 1)⌋ and nN = 2+ ⌊(1− c)(N + 1)⌋, where ⌊·⌋ is the floor
function.

Proposition 2.2. mN and nN satisfy:

1. mN
mN+nN

−−−−→
N→∞

c,

2. mN + nN = 4+N , for all N ∈N.

Corollary 2.3. At each iteration N ∈N∗, one and only one of these two propositions is true:

1. mN =mN−1 + 1 and nN = nN−1,

2. nN = nN−1 + 1 and mN =mN−1.

Such sequencesmN and nN satisfy the desired growth conditions (proof given in Appendix A). We
define the sequence of U -statistics as Uh

N := Uh
mN ,nN

.

2.2. Theorems

We establish the following results on the asymptotic behaviour of U -statistics over RCE matrices.

Theorem 2.4 (Main theorem). Let Y be a RCE matrix. Let h be a quadruplet kernel such that

E[h(Y{1,2;1,2})
2] < ∞. Let FN = σ

(

(Uh
kl, k ≥ mN , l ≥ nN )

)

and F∞ :=
⋂∞

N=1FN . Set Uh
∞ =

E[h(Y{1,2;1,2})|F∞]. Then

√
N(Uh

N −Uh
∞)

D−−−−→
N→∞

W,

where W is a random variable with characteristic function φ(t) = E[exp(−1
2 t

2V )], where

V =
4

c
Cov

(

h(Y{1,2;1,2}), h(Y{1,3;3,4})
∣

∣F∞
)

+
4

1− c
Cov

(

h(Y{1,2;1,2}), h(Y{3,4;1,3})
∣

∣F∞
)

.

Theorem 2.4 states that the limit distribution of
√
N(Uh

N − Uh
∞) is a mixture of Gaussians, but we

see that if V is constant, then it is a simple Gaussian. Next we identify a class of models where the
limiting distribution of

√
N(Uh

N −Uh
∞) is a simple Gaussian.

Definition 2.5. Y is a dissociated matrix if and only if (Yij)1≤i≤m,1≤j≤n is independent of
(Yij)i>m,j>n, for all m and n.
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In other words, Y is dissociated if submatrices that are not sharing any row or column are indepen-
dent. Now we claim the following extension to Theorem 2.4 for dissociated RCE matrices.

Theorem 2.6. In addition to the hypotheses of Theorem 2.4, if Y is dissociated, then Uh
∞ and V are

constant and
√
N(Uh

N −Uh
∞)

D−−−−→
N→∞

N (0, V ),

More precisely,

1. Uh
∞ = E[h(Y{1,2;1,2})],

2. V = 4
cCov

(

h(Y{1,2;1,2}), h(Y{1,3;3,4})
)

+ 4
1−cCov

(

h(Y{1,2;1,2}), h(Y{3,4;1,3})
)

.

Now we shall explain this result in the light of the Aldous-Hoover representation theorem. Theorem
1.4 of Aldous (1981) states that for any RCE matrix Y , there exists a real function f such that if we
denote Y ∗

ij = f(α, ξi, ηj , ζij), for 1≤ i, j <∞, where the α, ξi, ηj and ζij are i.i.d. random variables
with uniform distribution over [0,1], then

Y
D
= Y ∗.

It is possible to identify the role of each of the random variables involved in the representation
theorem. We notice that each Yij is determined by α, ξi, ηj and ζij . ζij is entry-specific while ξi is
shared by all the entries involving the row i and ηj by the ones involving the column j. Therefore, the
ξi and ηj represent the contribution of each individual of type 1 and type 2 of the network, i.e. each
row and column of the matrix. These contributions are i.i.d., which makes the network exchangeable.
Finally, α is global to the whole network and shared by all entries.

Proposition 3.3 of Aldous (1981) states that if Y is dissociated, then Y ∗ can be written without α, i.e.
it is of the form Y ∗

ij = f(ξi, ηj , ζij), for 1≤ i, j <∞. In this case, because the ξi, ηj and ζij are i.i.d.,
averaging with the U -statistic over an increasing number of nodes nullifies the contribution of each
individual interaction (ζij) and node (ξi and ηj ). In the general case, i.e. when Y is not dissociated, then
conditionally on α, Y is dissociated. It is easy to see that the mixture of Gaussians from Theorem 2.4
results from this conditioning.

We can also state with ease that Theorem 2.4 can be applied to matrices Y generated by the two
versions of the WBEDD model. Theorem 2.6 only applies to Version 1, where the matrix is dissociated.
Indeed, we see that in both models conditionally on λ, the expected mean of the interactions of any
submatrix is λ. Therefore any 2 submatrices are independent if λ is constant. We could also have
noticed that λ is determined by the α from the representation theorem of Aldous-Hoover.

In practice, dissociated exchangeable random graph models are widely spread. Notably, a RCE
model is dissociated if and only if it can be written as a W -graph (or graphon), i.e. it is defined by
a distribution W depending on two parameters in [0,1] such that for 1≤ i, j <∞ :

ξi, ηj
i.i.d.∼ U [0,1]

Yij | ξi, ηj ∼W(ξi, ηj)

In this definition, it is easy to recognize the variables from the representation theorem of Aldous-
Hoover. We simply identify the ξi and ηj , then it suffices to take φ−1

ξi,ηj
the inverse distribution func-

tion of W(ξi, ηj) to see that defining the dissociated RCE matrix Y ∗ such that Y ∗
ij = f(ξi, ηj , ζij) :=

φ−1
ξi,ηj

(ζij) fulfills Y ∗ D
= Y . It is also straightforward to remark that unlike Version 2, Version 1 of the

WBEDD model can be written as a W -graph model, setting W(ξi, ηj) := L(λf(ξi)g(ηj)).
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2.3. Proof of Theorem 2.4

To prove Theorem 2.4, we adapt the proof of Eagleson and Weber (1978) establishing the asymptotic
normality of sums of backward martingale differences. The definition of a backward martingale is
reminded in Appendix B.

Theorem 2.7 (Eagleson and Weber, 1978). Let (Mn,Fn)n≥1 be a square-integrable reverse mar-

tingale, V a F -measurable, a.s. finite, positive random variable. Denote M∞ := E[M1|F∞] where

F∞ :=
⋂∞

n=1Fn. Set Znk :=
√
n(Mk −Mk+1). If:

1.
∑∞

k=nE[Z
2
nk|Fk+1]

P−−−−→
n→∞ V (asymptotic variances),

2. for all ǫ > 0,
∑∞

k=nE[Z
2
nk1{|Znk|>ǫ}|Fk+1]

P−−−−→
n→∞

0 (conditional Lindeberg condition),

then
∑∞

k=nZnk =
√
n(Mn −M∞)

D−−−−→
n→∞ W , where W is a random variable with characteristic

function φ(t) = E[exp(−1
2 t

2V )].

Proof of Theorem 2.4. The three steps to apply Theorem 2.7 to (MN )N≥1 = (Uh
N )N≥1 are to show

that it is a backward martingale for a well chosen filtration and that it fulfills conditions 1 and 2. The
expression of V is made explicit along the way. More precisely,

1. first, defining FN = σ
(

(Uh
kl, k ≥mN , l ≥ nN )

)

, Proposition C.1 states that (Uh
N ,FN )N≥1 is

indeed a square-integrable reverse martingale ;
2. then, Proposition D.1 implies that

∑∞
k=nE[Z

2
NK |FK+1] does converge to a random variable V

with the desired expression ;
3. finally, the conditional Lindeberg condition is ensured by Proposition E.1, since from it, we

deduce that for all ǫ > 0,
∑∞

K=N E[Z2
NK1{|ZNK |>ǫ}|FK+1]

P−−−−→
N→∞

0.

Hence Theorem 2.7 can be applied to Uh
N and we obtain that

√
N(Uh

N − Uh
∞)

D−−−−→
N→∞

W , where W

is a random variable with characteristic function φ(t) = E[exp(−1
2 t

2V )] with V specified by Propo-
sition D.1. The proofs of Propositions C.1, D.1 and E.1 are provided in Appendices C, D. and E
respectively.

2.4. Proof of Theorem 2.6

The proof of Theorem 2.6 relies on a Hewitt-Savage type zero-one law for events that are permutable
in our row-column setup. Therefore, it is useful to define first what a row-column permutable event is.
We remind the Aldous-Hoover representation theorem for dissociated RCE matrices as stated earlier:
if Y is a dissociated RCE matrix, then its distribution can be written with (ξi)1≤i<mN

, (ηj)1≤j<nN

and (ζij)1≤i≤mN ,1≤j≤nN
arrays of i.i.d. random variables.

Then let us consider such arrays of i.i.d. random variables (ξi)1≤i<mN
, (ηj)1≤j<nN

and (ζij)1≤i≤mN ,1≤j≤nN
.

If we were to consider events depending only on them, there is no loss of generality in using the product
probability space (ΩN ,AN ,PN ), where

ΩN =
{

(ωξ , ωη, ωζ) : ωξ ∈R
mN , ωη ∈R

nN , ωζ ∈R
mNnN

}

=R
mN+nN+mNnN ,

AN = B(R)mN+nN+mNnN ,

PN = µmN+nN+mNnN .
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We then define the action of a row-column permutation on an element of ΩN .

Definition 2.8. Let Φ= (σ1, σ2) ∈ SmN
× SnN

. The action of Φ on ω ∈ΩN is defined by

Φω =
(

σ1ω
ξ, σ2ω

η, (σ1, σ2)ω
ζ
)

where σ1ωξ = (ω
ξ
σ1(i)

)1≤i<mN
, σ2ωη = (ω

η
σ2(j)

)1≤j<nN
and (σ1, σ2)ωζ = (ω

ζ
σ1(i)σ2(j)

)1≤i<mN ,1≤j<nN

Definition 2.9. Let A ∈ AN . A is invariant by the action of SmN
× SnN

if and only if for all Φ ∈
SmN

× SnN
, Φ−1A=A, i.e.

{ω : Φω ∈A}= {ω : ω ∈A} .

Notation. In this section, we denote by EN the collection of events of AN that are invariant by row-
column permutations of size mN × nN , i.e. Φ ∈ SmN

× SnN
. We denote E∞ :=

⋂∞
n=1 EN , which is

the collection of events that are invariant by permutations of size mN × nN , for all N .

The following theorem is an extension of the Hewitt-Savage zero-one law to the row-column setup.

Theorem 2.10. For all A ∈ E∞, P(A) = 0 or P(A) = 1.

The proof of Theorem 2.10 is given in Appendix F. Now we use this result to derive Theorem 2.6
from Theorem 2.4.

Proof of Theorem 2.6. In this proof, we specify the matrices over which the U -statistics are taken, i.e.
we denote Uh

k,l(Y ) instead of Uh
k,l the U -statistic of size k × l with kernel h taken on Y . We denote

also FN (Y ) = σ
(

(Uh
kl(Y ), k ≥mN , l≥ nN )

)

which are sets of events depending on Y .
Since Y is RCE and dissociated, Proposition 3.3 of Aldous (1981) allows us to consider a real

function f such that for 1 ≤ i, j <∞, Y ∗
ij = f(ξi, ηj , ζij) and Y ∗ D

= Y , where ξi, ηj and ζij , for
1≤ i, j <∞ are i.i.d. random variables with uniform distribution on [0,1]. Therefore we can consider
these random variables, the product spaces (ΩN ,AN ,PN ) and the sets EN of invariant events defined
earlier.

But FN (Y ∗) = σ
(

(Uh
kl(Y

∗), k ≥ mN , l ≥ nN )
)

⊂ σ(UN (Y ∗), ξi, ηj , ζij , i > mN , j > nN ), so
for all N , FN (Y ∗) ⊂ EN . It follows that F∞(Y ∗) ⊂ E∞, so U∞(Y ∗) is F∞(Y ∗)-measurable.
Theorem 2.10 states that all the events in E∞ happen with probability 0 or 1, so it ensures that
U∞(Y ∗) = E[h(Y ∗

{1,2;1,2})|F∞(Y ∗)] = E[h(Y ∗
{1,2;1,2})] is constant. Moreover, since the distribution

of Uh
N (Y ) is the same as this of Uh

N (Y ∗), we can conclude that U∞(Y ) = E[h(Y{1,2;1,2})|F∞(Y )] =

E[h(Y{1,2;1,2})].
Likewise, we deduce that E[h(Y{1,2;1,2})h(Y{1,3;3,4})|F∞(Y )] = E[h(Y{1,2;1,2})h(Y{1,3;3,4})]

and E[h(Y{1,2;1,2})h(Y{3,4;1,3})|F∞(Y )] = E[h(Y{1,2;1,2})h(Y{3,4;1,3})] which gives the desired re-
sult for V . Thus we conclude that W of Theorem 2.4 follows a Gaussian distribution of variance V .

3. Applications

In this section, we illustrate how to build statistical tests on RCE networks using our result. Indeed,
U -statistics can be used to build unbiased estimators. The advantage of taking quadruplets is to define
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functions over several interactions of the same row or column. This allows us to extract information on
the row and column distribution. Theorem 2.6 then guarantees an asymptotic normality result, where
the only unknown is V , which has to be estimated then plugged in with Slutsky’s Theorem.

Now through different examples, we will show how one might use different kernels to estimate all
the needed quantities to design tests on the Version 1 of the WBEDD (with constant density), to which
Theorem 2.6 applies.

3.1. Heterogeneity in the row degrees of a network

Remember that the function f (resp. g) of the WBEDD model defines the expected weight distribution
of the row (resp. column) nodes. For all k > 0, we denote Fk =

∫ 1
0 f

k(u)du (resp. Gk =
∫ 1
0 g

k(v)dv).
Consider that we are interested in the distribution of the row degrees only. We know thatF1 = 1, but we
see that F2 =

∫ 1
0 f

2(u)du quantifies the heterogeneity in the row degrees. Indeed, if f is constant, i.e.
f ≡ 1 and F2 = 1, then the row degrees are homogeneous. Besides, the higher F2, the more unbalanced
their distribution. More specifically, a large value of F2 indicates a strong distinction between generalist
(with high degree) and specialists (with low degree) nodes. Then in order to evaluate the homogeneity
of the rows of a network, it makes sense to test the following hypotheses : H0 : f ≡ 1 vs. H1 : f 6≡ 1
using an estimator of F2.
F2 can be estimated with the U -statistic based on the quadruplet kernel h1(Y[i1,i2;j1,j2]) =

1
2 (Yi1j1Yi1j2 + Yi2j1Yi2j2). We see that E[Uh1

N ] = E[h1(Y{i1,i2;j1,j2})] = λ2F2. So Theorem 2.6 and
the derivation of V gives the following result :

√

N

V
(Uh1

N − λ2F2)
D−−−−→

N→∞
N (0,1),

where V = λ4c−1(F4 − F 2
2 ) + 4λ4(1− c)−1F 2

2 (G2 − 1).

We use the kernelh2(Y{i1,i2;j1,j2}) =
1
4 (Yi1j1+Yi1j2+Yi2j1+Yi2j2) to constructUh2

N , a consistent
estimator of λ. It follows from Slutsky’s theorem that

√

N

V
(Uh2

N )2
(

Uh1
N

(Uh2
N )2

− F2

)

D−−−−→
N→∞

N (0,1). (1)

Under H0, F2 = F4 = 1, so V = 4λ4(1 − c)−1(G2 − 1). Then, to estimate V , we consider the
U -statistic based on the kernel h3(Y[i1,i2;j1,j2]) =

1
2 (Yi1j1Yi2j1 + Yi1j2Yi2j2), which is a consistent

estimator for λ2G2. Thus, V can be consistently estimated by

V̂N =
4

1− c
(Uh2

N )4

[

Uh3
N

(Uh2
N )2

− 1

]

.

Finally, a further application of Slutsky’s theorem implies that under H0,

√

N

V̂N
(Uh2

N )2
(

Uh1
N

(Uh2
N )2

− 1

)

D−−−−→
N→∞

N (0,1).

This result allows us to define an asymptotic test for H0 : F2 = 1.
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3.2. Network comparison

The previous example shows how to build a test for a single network. In fact, it is easy to extend this
framework to network comparison, provided the networks are independent. Indeed, say network Y A

and Y B are independent. Then for any quadruplet kernel h, the U -statistics Uh
N (Y A) and Uh

N (Y B)
computed on each network are also independent. Therefore, if we were to compare the row degree
unbalance of two networks, we can opt for a test of the type H0 : FA

2 = FB
2 vs. H1 : FA

2 6= FB
2 .

One can simply notice that Uh
N (Y A) − Uh

N (Y B) is still asymptotically normal, with E[Uh
N (Y A) −

Uh
N (Y B)] = FA

2 − FB
2 and it is easy to find the asymptotic variance V as V[Uh

N (Y A)−Uh
N (Y B)] =

V[Uh
N (Y A)] +V[Uh

N (Y B)].

3.3. Further remarks and leads

We have showcased an example of application of our result to statistical test design. One interest-
ing feature of the kernels used is that they are simple to compute. Indeed, if we denote YN :=
(Yij)1≤i≤mN ,1≤j≤nN

, one can write the U -statistics used in the previous example as

Uh1
N =

1

nNmN (mN − 1)

[

|Y T
N YN |1 −Tr(Y T

N YN )
]

,

Uh2
N =

1

nNmN
|YN |1,

Uh3
N =

1

nN (nN − 1)mN

[

|YNY T
N |1 −Tr(YNY

T
N )
]

,

where Tr is the trace operator. We see that these U -statistics can be computed using only simple
operations on matrices, which are optimized in most computing software.

However, one can define more elaborate kernels to test further hypotheses on other models. The only
conditions on the model are that it should be RCE and dissociated, i.e. it can be written as a bipartite
W-graph model. For example, given the W-graph model Yij | ξi, ηj ∼ P(λw(ξi, ηj)) with

∫ ∫

w = 1,
one could have tested if it is of product form, i.e. if f(u) =

∫

w(u, v)dv and g(v) =
∫

w(u, v)du, w
can be written as w(u, v) = f(u)g(v) (as in the WBEDD model). An appropriated kernel for this test
would be

h(Y{i1,i2;j1,j2}) =
1

4
Yi1j1Yi2j2(Yi1j1 + Yi2j2 − Yi1j2 − Yi1j2 − 2)

+
1

4
Yi1j2Yi1j2(Yi1j2 + Yi1j2 − Yi1j1 − Yi2j2 − 2)

as E[h(Y{i1,i2;j1,j2})] =
∫ ∫

w(u, v)(w(u, v)− f(u)g(v))dudv and should be equal to 0 if the hypoth-
esis is true.

The counts of bipartite motifs of size 2× 2 can be expressed as quadruplet U -statistics and can be
integrated in our framework. If Y is a binary matrix, then one can count the diagonal motifs using a ker-
nel and obtain statistical guarantees. For example, motif 5 of Figure 7 in Ouadah, Latouche and Robin
(2021) can be counted with the kernel

h(Y{i1,i2;j1,j2}) =Yi1j1Yi1j2Yi2j1(1− Yi2j2) + Yi1j1Yi1j2Yi2j2(1− Yi2j1)

+ Yi1j1Yi2j1Yi2j2(1− Yi1j2) + Yi1j2Yi2j1Yi2j2(1− Yi1j1).
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It is legitimate to wonder if one can extend our framework to U -statistics over submatrices of
size different from 2 × 2, for example Y{i1,...,ip;j1,...,jq} of size p × q. If this can be done, then
our framework can be used to count motifs of larger size. Also, one could have used formula (1)
of the row heterogeneity example to derive an asymptotic confidence interval for F2 (we do not
necessarily have F2 = F4 = 1). Instead of using quadruplet kernels, we notice that one could have
estimated the term λ4F4 appearing in V with a kernel over submatrices of size 1 × 4 such as
h(Y{i1;j1,j2,j3,j4}) = Yi1j1Yi1j2Yi1j3Yi1j4 and E[h(Y{i1;j1,j2,j3,j4})] = λ4F4. The possibility for an
extension is discussed in the next section.

4. Discussion

We do not claim that the chosen kernels and the derived U -statistics necessarily lead to the most
powerful tests. We have seen that one might combine several U -statistics to find a consistent estimator
for V . Especially, this might make the convergence of V̂N slow, especially when these U -statistics are
correlated and there might exist more optimal kernels to build this test. In conclusion, these U -statistics
based on quadruplets might not be theoretically the most efficient estimators, but more importantly,
they are simple and easy to compute in practice.

It is possible to extend our theorem to U -statistics over submatrices of size different from 2× 2, for
example Y{i1,...,ip;j1,...,jq} of size p× q. In this case, for some kernel h on these submatrices,

Uh
N =

[(

mN

p

)(

nN
q

)]−1
∑

1≤i1<...<ip≤mN

∑

1≤j1<...<jq≤nN

h(Y{i1,...,ip;j1,...,jq}),

would also be asymptotically normal. All the steps of our proof can be adapted to U -statistics of larger
subgraphs. These U -statistics are indeed backward martingales and the equivalent of Proposition D.1
and Proposition E.1 require more calculus. As a consequence, the asymptotic variance also has a dif-
ferent expression. On the one hand, such an extension would allow more flexibility in the choice of the
kernel, hence the ability to build more complex estimators. On the other hand, in practice, the compu-
tation of such U -statistics may also be more complex and computationally demanding, whereas simple
functions on quadruplets can easily be expressed with matrix operations.

Further studies might be carried to investigate the rate of convergence of
√
N(Uh

N − Uh
∞) to its

limiting distribution. A possible direction is the derivation of a Berry-Esseen-type bound. For specific
applications, the computation of this rate through numerical simulation is also possible.

Appendix A: Properties of mN and nN

In this appendix, we provide the proofs for Proposition 2.2 and further properties of the sequencesmN

and nN defined as mN = 2+ ⌊c(N + 1)⌋ and nN = 2+ ⌊(1− c)(N + 1)⌋ for all N ≥ 1, where c is
an irrational number (Definition 2.1).

Proof of Proposition 2.2. The second result stems from the fact that

mN + nN = 4+ ⌊c(N + 1)⌋+ ⌊(1− c)(N + 1)⌋= 4+ ⌊c(N + 1)⌋+ ⌊−c(N + 1)⌋+N + 1

and ⌊c(N + 1)⌋+ ⌊−c(N + 1)⌋= −1 because c(N + 1) is not an integer since c is irrational. Then,
the first result simply follows as

mN

mN + nN
=

⌊c(N + 1)⌋+ 2

N + 4
∼
N

c(N + 1)+ 2

N + 4
∼
N

cN

N
,
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where ∼
N

denotes the asymptotic equivalence when N grows to infinity, i.e. aN ∼
N
bN if and only if

aN/bN −→
N→∞

1.

Proof of Corollary 2.3. As mN and nN are non decreasing, the corollary is a direct consequence of
mN + nN = 4+N , because then mN+1 + nN+1 = 4+N + 1=mN + nN +1.

Definition A.1. We define Bc and B1−c two complementary subsets of N∗ as

Bc = {N ∈N
∗ :mN =mN−1 + 1} and B1−c = {N ∈N

∗ : nN = nN−1 +1} .

Proposition A.2. Set κc(m) :=
⌊

m−2
c

⌋

and κ1−c(n) :=
⌊

n−2
1−c

⌋

. If N ∈ Bc, then N = κc(mN ).
Similarly, if N ∈ B1−c, then N = κ1−c(nN ).

Proof. Remember that c is an irrational number, so if N ∈ Bc, then

cN + 2< ⌊cN⌋+ 3=mN−1 +1=mN = ⌊c(N + 1)⌋+ 2< c(N + 1)+ 2,

which means that mN−2
c − 1<N < mN−2

c , thus N =
⌊mN−2

c

⌋

.

Appendix B: Backward martingales

In this appendix, we recall the definition of backward martingales and their convergence theorem.

Definition B.1. Let F = (Fn)n≥1 be a decreasing filtration and M = (Mn)n≥1 a sequence of inte-
grable random variables adapted to F . (Mn,Fn)n≥1 is a backward martingale if and only if for all
n≥ 1, E[Mn|Fn+1] =Mn+1.

Theorem B.2. Let (Mn,Fn)n≥1 be a backward martingale. Then, (Mn)n≥1 is uniformly integrable,

and, denotingM∞ = E[M1|F∞] where F∞ =
⋂∞

n=1Fn, we have

Mn
a.s.,L1−−−−→
n→∞

M∞.

Furthermore, if (Mn)n≥1 is square-integrable, then Mn
L2−−−−→

n→∞
M∞.

Appendix C: Square-integrable backward martingale

In this appendix, we prove Proposition C.1, which states that Uh
N is a square-integrable backward

martingale.

Proposition C.1. Let Y be a RCE matrix. Let h be a quadruplet kernel such that E[h(Y{1,2;1,2})
2]<

∞. Let FN = σ
(

(Uh
kl, k ≥ mN , l ≥ nN )

)

and F∞ =
⋂∞

N=1FN . Set Uh
∞ := E[h(Y{1,2;1,2})|F∞].

Then (Uh
N ,FN )N≥1 is a square-integrable backward martingale andUh

N

a.s.,L2−−−−→
N→∞

Uh
∞ = E[h(Y{1,2;1,2})|F∞].
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The proof relies on the following lemma.

Lemma C.2. For all 1 ≤ i1 < i2 ≤ mN and 1 ≤ j1 < j2 ≤ nN , E[h(Y{i1,i2;j1,j2})|FN ] =

E[h(Y{1,2;1,2})|FN ].

Proof. In the proof of this lemma, we specify the matrices over which the U -statistics are taken, i.e.
we denote Uh

k,l(Y ) instead of Uh
k,l the U -statistic of kernel h and of size k× l computed on Y .

By construction, for all k ≥mN , l≥ nN , for all matrix permutationΦ ∈ SmN
×SnN

(only changing
the first mN rows and nN columns), we have Uh

k,l(ΦY ) = Uh
k,l(Y ). Moreover, since Y is RCE, we

also have ΦY
D
= Y . Therefore,

ΦY |(Uh
k,l(Y ), k ≥mN , l≥ nN )

D
= Y |(Uh

k,l(Y ), k ≥mN , l≥ nN ).

That means that conditionally on FN , the first mN rows and nN columns of Y are exchangeable and
the result to prove follows from this.

Proof of Proposition C.1. First, we remark that as E[h(Y{1,2;1,2})
2]<∞, then for allN , E[(Uh

N )2]<

∞. Thus, the (Uh
N )N≥1 are square-integrable. Second, F = (FN )N≥1 is a decreasing filtration and

for all N , Uh
N is FN -measurable.

Now using lemma C.2, we have for all K ≤N ,

E[Uh
K |FN ] =

(

mK

2

)−2(nK
2

)−2
∑

1≤i1<i2≤mK
1≤j1<j2≤nK

E[h(Y{i1,i2;j1,j2})|FN ]

=

(

mK

2

)−2(nK
2

)−2
∑

1≤i1<i2≤mK
1≤j1<j2≤nK

E[h(Y{1,2;1,2})|FN ]

= E[h(Y{1,2;1,2})|FN ],

In particular, E[Uh
N−1|FN ] = E[Uh

N |FN ] = Uh
N , which concludes the proof that (Uh

N ,FN )N≥1 is a

square-integrable backward martingale. Finally, Theorem B.2 ensures that Uh
N

a.s.,L2−−−−→
N→∞

Uh
∞.

Appendix D: Asymptotic variances

We prove Proposition D.1 which gives the convergence and an expression for the asymptotic variance.
The proof involves some tedious calculations. Before that, we introduce some notations to make the
proof of Proposition D.1 more readable.

Notation. In this appendix and in Appendix E, we denote

• X[i1,i2;j1,j2] := h(Y{i1,i2;j1,j2}),
• ZNK :=

√
N(UK −UK+1),

• SNK := E[Z2
NK |FK+1],

• VN :=
∑∞

K=N SNK .
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The exchangeability of Y implies that E[X[i1,i2;j1,j2]X[i′1,i
′
2;j

′
1,j

′
2]
|FK ] only depends on the numbers

of rows and columns shared by both [i1, i2; j1, j2] and [i′1, i
′
2; j

′
1, j

′
2]. For 0≤ p≤ 2 and 0≤ q ≤ 2, we

set

c
(p,q)
K := E[X[i1,i2;j1,j2]X[i′1,i

′
2;j

′
1,j

′
2]
|FK ],

and

c
(p,q)
∞ := E[X[i1,i2;j1,j2]X[i′1,i

′
2;j

′
1,j

′
2]
|F∞],

where they share p rows and q columns.

Proposition D.1. VN
P−−−−→

N→∞
V = 4c−1(c

(1,0)
∞ −U2

∞) + 4(1− c)−1(c
(0,1)
∞ −U2

∞).

The proof of Proposition D.1 will be based on the following five lemmas.

Lemma D.2. If K ∈ Bc, then

ZN,K−1 =
√
N

2

mK − 2
(UK − δK),

where

δK = (mK − 1)−1
(

nK
2

)−1
∑

1≤i1≤mK−1
1≤j1<j2≤nK

X[i1,mK ;j1,j2].

Proof. Observe that

∑

1≤i1<i2≤mK
1≤j1<j2≤nK

X[i1,i2;j1,j2] =
∑

1≤i1<i2≤mK−1
1≤j1<j2≤nK

X[i1,i2;j1,j2] +
∑

1≤i1≤mK−1
1≤j1<j2≤nK

X[i1,mK ;j1,j2]. (2)

But if K ∈ Bc (see definition A.1), then mK−1 =mK − 1 and nK−1 = nK . Therefore, equation (2)
is equivalent to

(

mK

2

)(

nK
2

)

UK =

(

mK − 1

2

)(

nK
2

)

UK−1 + (mK − 1)

(

nK
2

)

δK ,

so

UK−1 =
1

mK − 2
(mKUK − 2δK) .

This concludes the proof since ZN,K−1 =
√
N(UK−1 −UK).

We now calculate SNK in the following lemmas.

Lemma D.3. For all 0≤ p≤ 2 and 0≤ q ≤ 2, c
(p,q)
N

a.s.,L1−−−−→
N→∞

c
(p,q)
∞ .

Proof. This follows from the fact that (c
(p,q)
N ,FN )N≥1 is a backward martingale.



U -statistics on RCE matrices 13

Lemma D.4. If K ∈ Bc, then

SN,K−1 = 4N

(

(nK − 2)(nK − 3)

(mK − 1)(mK − 2)nK(nK − 1)
c
(1,0)
K − 1

(mK − 2)2
U2
K + ψ(K)

)

,

where ψ does not depend on N and ψ(K) = o(m−2
K ).

Proof. Because of Lemma D.2 and the FK -measurability of UK ,

SN,K−1 =
4N

(mK − 2)2
(E[δ2K |FK ] +U2

K − 2UKE[δK |FK ]).

First, Lemma C.2 implies that

E[δK |FK ] = UK .

Then, we can calculate

E[δ2K |FK ] = (mK − 1)−2
(

nK
2

)−2
∑

1≤i1≤mK−1
1≤j1<j2≤nK

∑

1≤i′1≤mK−1
1≤j′1<j′2≤nK

E[X[i1,mK ;j1,j2]X[i′1,mK ;j′1,j
′
2]
|FK ].

Each term of the sum only depends on the number of rows and columns the quadruplets in
X[i1,mK ;j1,j2] andX[i′1,mK ;j′1,j

′
2]

have in common. For example, if they share p rows and q columns, it

is equal to c
(p,q)
K . So by breaking down the different cases for p and q, we may count the number of pos-

sibilities. For example, if (p, q) = (1,2), then the number of possibilities is (mK − 1)(mK − 2)
(

nK
2

)

.
This gives

E[δ2K |FK ] = (mK − 1)−1
(

nK
2

)−1{1

2
(mK − 2)(nK − 2)(nK − 3)c

(1,0)
K +2(mK − 2)(nK − 2)c

(1,1)
K

+ (mK − 2)c
(1,2)
K +

1

2
(nK − 2)(nK − 3)c

(2,0)
K + 2(nK − 2)c

(2,1)
K + c

(2,2)
K

}

.

Finally, setting

ψ(K) := (mK − 1)−3
(

nK
2

)−1{

2(mK − 2)(nK − 2)c
(1,1)
K + (mK − 2)c

(1,2)
K

+
1

2
(nK − 2)(nK − 3)c

(2,0)
K +2(nK − 2)c

(2,1)
K + c

(2,2)
K

}

,

we obtain the desired result, with ψ(K) = o(m−2
K ) since mK

c ∼
K

nK
1−c ∼K K .

Remark. In the case where K ∈ B1−c, the equivalent formulas to those of Lemmas D.2 and D.4 are
derived from similar proofs. If K ∈ B1−c, then

ZN,K−1 =
√
N

2

nK − 2
(UK − γK),
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where

γK = (nK − 1)−1
(

mK

2

)−1
∑

1≤i1<i2≤mK
1≤j1≤nK−1

X[i1,i2;j1,nK ],

and

SN,K−1 = 4N

(

(mK − 2)(mK − 3)

(nK − 1)(nK − 2)mK(mK − 1)
c
(0,1)
K − 1

(nK − 2)2
U2
K + ϕ(K)

)

,

where ϕ does not depend on N and ϕ(K) = o(n−2
K ).

Lemma D.5. Let (Rn)n≥1 be a sequence of random variables and (λn)n≥1 a sequence of real

positive numbers. Set Cn := n
∑∞

k=n λkRk . If

• n
∑∞

k=n λk −−−−→n→∞
1, and

• there exists a random variable R∞ such that Rn
a.s.−−−−→

n→∞
R∞,

then Cn
a.s.−−−−→

n→∞
R∞. Furthermore, if Rn

L1−−−−→
n→∞

R∞, then Cn
L1−−−−→

n→∞
R∞.

Proof. Notice that

|Cn −R∞|=
∣

∣n

∞
∑

k=n

λkRk −R∞
∣

∣

≤
∣

∣n

∞
∑

k=n

λkRk − n

∞
∑

k=n

λkR∞
∣

∣+
∣

∣n

∞
∑

k=n

λkR∞ −R∞
∣

∣

≤
(

n

∞
∑

k=n

λk

)

× sup
k≥n

|Rk −R∞|+
∣

∣n

∞
∑

k=n

λk − 1
∣

∣× |R∞|.

If n
∑∞

k=n λk −−−−→
n→∞

1 and Rn
a.s.−−−−→

n→∞
R∞, then for all ω fixed except a set of neglectable size,

Cn(ω)−−−−→
n→∞

R∞(ω), which gives the a.s. convergence. Now, consider also that

E

[

|Cn −R∞|
]

≤ n

∞
∑

k=n

λkE

[

|Rk −R∞|
]

+
∣

∣n

∞
∑

k=n

λk − 1
∣

∣E

[

|R∞|
]

≤
(

n
∞
∑

k=n

λk

)

× sup
k≥n

E

[

|Rk −R∞|
]

+
∣

∣n
∞
∑

k=n

λk − 1
∣

∣E

[

|R∞|
]

.

So if Rn
L1−−−−→

n→∞
R∞, then E

[

|Rn − R∞|
] L1−−−−→

n→∞
0 and supk≥nE

[

|Rk − R∞|
] L1−−−−→

n→∞
0. Since

n
∑∞

k=n λk −−−−→
n→∞

1, the first term converges to 0, and the second term too because E
[

|R∞|
]

<∞.

Finally, E
[

|Cn −R∞|
]

−−−−→
n→∞

0.
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Lemma D.6. Let (Qn)n≥1 be a sequence of random variables. Set Cn := n
∑∞

k=nQk. If there

exists a random variable C∞ such that n2Qn
a.s.−−−−→

n→∞
C∞, then Cn

a.s.−−−−→
n→∞

C∞. Furthermore, if

n2Qn
L1−−−−→

n→∞
C∞, then Cn

L1−−−−→
n→∞

C∞.

Proof. This is a direct application of Lemma D.5, whereRn := n2Qn and λn := n−2, as n
∑∞

k=n k
−2 −−−−→

n→∞
1.

Proof of Proposition D.1. Recall that from Corollary 2.3, Bc and B1−c form a partition of the set of
the positive integers N∗, so that we can write

VN = V
(c)
N + V

(1−c)
N ,

where V
(c)
N =

∑∞
K=N+1
K∈Bc

SN,K−1 and V
(1−c)
N =

∑∞
K=N+1
K∈B1−c

SN,K−1. Here, we only detail the com-

putation of V
(c)
N , as one can proceed analogously with V

(1−c)
N .

In V (c)
N , the sum is over the K ∈ Bc. So, from Lemma D.4,

SN,K−1 = 4N

(

(nK − 2)(nK − 3)

(mK − 1)(mK − 2)nK(nK − 1)
c
(1,0)
K − 1

(mK − 2)2
U2
K + ψ(K)

)

.

Now we use Proposition A.2 to replace K with κc(mK) =
⌊mK−2

c

⌋

and

SN,κc(mK )−1 = 4N

(

(κc(mK)−mK + 2)(κc(mK)−mK + 1)

(mK − 1)(mK − 2)(κc(mK)−mK + 4)(κc(mK)−mK +3)
c
(1,0)
κc(mK)

− 1

(mK − 2)2
U2
κc(mK ) + ψ(κc(mK))

)

.

Therefore, because for all K ∈ Bc we have mK =mK−1 + 1, we can then transform the sum over K
into a sum over m and

V
(c)
N =

∞
∑

K=N+1
K∈Bc

SN,K−1 =

∞
∑

m=mN+1

SN,κc(m)−1 =N

∞
∑

m=mN+1

Rm,

where Rm := SN,κc(m)−1/N , i.e.

Rm =
4(κc(m)−m+2)(κc(m)−m+ 1)

(m− 1)(m− 2)(κc(m)−m+4)(κc(m)−m+ 3)
c
(1,0)
κc(m)

− 4

(m− 2)2
U2
κc(m) + 4ψ(κc(m)).

But we notice that since ψ(κc(m)) = o(m−2), then Lemma D.3 and Proposition C.1 give for all N ,

m2Rm
a.s.,L1−−−−→
m→∞

4(c
(1,0)
∞ −U2

∞).

And since mN+1
N −−−−→

N→∞
c from Proposition 2.2, we find with Lemma D.6 that

V
(c)
N =

N

mN+1
×mN+1

∞
∑

m=mN+1

Rm
a.s.,L1−−−−→
N→∞

4

c
(c

(1,0)
∞ −U2

∞).
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We can proceed likewise with V (1−c)
N , where all the terms have K ∈ B1−c, to get

V
(1−c)
N

a.s.,L1−−−−→
N→∞

4

1− c
(c

(0,1)
∞ −U2

∞),

which finally gives

VN = V
(c)
N + V

(1−c)
N

a.s.,L1−−−−→
N→∞

V :=
4

c
(c

(1,0)
∞ −U2

∞) +
4

1− c
(c

(0,1)
∞ −U2

∞).

Appendix E: Conditional Lindeberg condition

We verify the conditional Lindeberg condition as stated by Proposition E.1. We use the notations de-
fined in Appendix D.

Proposition E.1. Let ǫ > 0. Then the conditional Lindeberg condition is satisfied :

∞
∑

K=N

E
[

Z2
NK1{|ZNK |>ǫ}

∣

∣FK+1

] P−−−−→
N→∞

0

The proof relies on the four following lemmas.

Lemma E.2. Let (Qn)n≥1 be a sequence of random variables. SetCn := n
∑∞

k=nQk. If n2E
[

|Qn|
]

−−−−→
n→∞

0, then Cn
P−−−−→

n→∞
0.

Proof. Lemma D.6 and the triangular inequality give E
[

|Cn|
]

≤ n
∑∞

k=nE
[

|Qk|
]

−−−−→
n→∞

0. Let some

ǫ > 0, then Markov’s inequality ensures that

P(|Cn|> ǫ)≤ E
[

|Cn|
]

ǫ
−−−−→
n→∞

0.

Lemma E.3. For sequences of random variablesUn and setsBn, if Un
L2−−−−→

n→∞
U and 1(Bn)

P−−−−→
n→∞

0, then E[U2
n1(Bn)]−−−−→

n→∞
0.

Proof. Note that for all n, a > 0,

E
[

U2
n1(Bn)

]

= E
[

U2
n1(Bn)1(U

2
n > a)

]

+E
[

U2
n1(Bn)1(U

2
n ≤ a)

]

≤ E
[

U2
n1(U

2
n > a)

]

+E
[

a1(Bn)
]

≤ E
[

U2
n1(U

2
n > a)

]

+ aP(Bn)
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Let ǫ > 0. Un
L2−−−−→

n→∞ U , so (U2
n)n≥1 is uniformly integrable and there exists a > 0 such that

E[U2
n1(U

2
n > a)] ≤ supk E[U

2
k1(U

2
k > a)] ≤ ǫ

2 . Moreover, 1(Bn)
P−−−−→

n→∞
0, which translates to

P(Bn)−−−−→
n→∞ 0 and there exists an integer n0 such that for all n > n0, P(Bn)≤ ǫ

2a . Choosing such a

real number a, we can always find an integer n0 such that for n > n0, we have E[U2
n1(Bn)]≤ ǫ.

Lemma E.4. For sequences of random variables Mn and sets Bn, if (Mn)n≥1 is a backward mar-

tingale with respect to some filtration and 1(Bn)
P−−−−→

n→∞
0, then E[Mn1(Bn)]−−−−→

n→∞
0.

Proof. We notice that from Theorem B.2, (Mn)n≥1 is uniformly integrable, then the proof is similar
to that of Lemma E.3.

Lemma E.5. Set AK :=m−1
K

(nK
2

)−1∑
2≤i2≤mK+1
1≤j1<j2≤nK

X[1,i2;j1,j2]. If K ∈ Bc, then AK
D
= δK ,where

δK is defined in Lemma D.2.

Proof. Remember that if K ∈ Bc (see Definition A.1), then by symmetry of h, δK = (mK −
1)−1

(nK
2

)−1 ∑

1≤i2≤mK−1
1≤j1<j2≤nK

X[mK ,i2;j1,j2]. The exchangeability of Y says that all permutations on the

rows and the columns of Y leave its distribution unchanged, hence for all (σ1, σ2) ∈ SmK
× SnK

, we
have

δK
L
= (mK − 1)−1

(

nK
2

)−1
∑

1≤i2≤mK−1
1≤j1<j2≤nK

X[σ1(mK),σ1(i2);σ2(j1),σ2(j2)].

Consider σ2 to be the identity and σ1 ∈ SmK
the permutation defined by :

• σ1(i) = i+1 if i <mK ,
• σ1(mK) = 1,
• σ1(i) = i if i >mK .

Then AK = (mK − 1)−1
(nK

2

)−1 ∑

1≤i2≤mK−1
1≤j1<j2≤nK

X[σ1(mK),σ1(i2);σ2(j1),σ2(j2)], hence AK
L
= δK .

Proof of Proposition E.1. Similarly to the proof of the Proposition D.1, we can verify the conditional
Lindeberg condition by decomposing the sum along with K + 1 ∈ Bc and K + 1 ∈ B1−c (Corol-
lary 2.3), so here we only consider

∑∞
K=N+1
K∈Bc

E
[

Z2
N,K−11{|ZN,K−1|>ǫ}|FK

]

.

Like previously, using Proposition A.2, we can transform the sum over K into a sum over m :

∞
∑

K=N+1
K∈Bc

E
[

Z2
N,K−11{|ZN,K−1|>ǫ}|FK

]

=

∞
∑

m=mN+1

E
[

Z2
N,κc(m)−11{|ZN,κc(m)−1|>ǫ}|Fκc(m)

]

,

where κc(m) = ⌊m−2
c ⌋.
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We remark that for m≥mN+1 =mN + 1> c(N + 1)+ 2,

1{|ZN,κc(m)−1|>ǫ} ≤ 1{ 2
√

N
m−2

|Uκc(m)−δκc(m)|>ǫ
}

≤ 1{|Uκc(m)−δκc(m)|> m−2

2
√

m−2
c

ǫ
}

≤ 1{
|Uκc(m)|>

√
c(m−2)

4
ǫ
} + 1{

|δκc(m)|>
√

c(m−2)

4
ǫ
}.

So, using the identity (Uκc(m) − δκc(m))
2 ≤ 2(U2

κc(m) + δ2
κc(m)), we get for m≥mN+1,

E
[

Z2
N,κc(m)−11{|ZN,κc(m)−1|>ǫ}|Fκc(m)

]

≤ 8N

(m− 2)2
E

[

(U2
κc(m) + δ2κc(m))

(

1{
|Uκc(m)|>

√
c(m−2)

4
ǫ
} + 1{

|δκc(m)|>
√

c(m−2)

4
ǫ
}

)
∣

∣

∣

∣

Fκc(m)

]

.

This inequality and Lemma E.2 imply that a sufficient condition to have the conditional Lindeberg
condition is

E

[

(U2
κc(m) + δ2κc(m))

(

1{
|Uκc(m)|>

√
c(m−2)

4
ǫ
} + 1{

|δκc(m)|>
√

c(m−2)

4
ǫ
}

)]

−−−−→
m→∞

0. (3)

Next, we prove that this condition is satisfied.
First, note that

P

(

|Uκc(m)|>
√

c(m− 2)

4
ǫ

)

≤
4E[|Uκc(m)|]
ǫ
√

c(m− 2)
−−−−→
m→∞

0

and

P

(

|δκc(m)|>
√

c(m− 2)

4
ǫ

)

≤
4E[|δκc(m)|]
ǫ
√

c(m− 2)
−−−−→
m→∞

0.

Now, remember that from Proposition C.1, UK
L2−−−−→

K→∞
U∞, therefore Uκc(m)

L2−−−−→
m→∞

U∞ and

Lemma E.3 can be applied, which gives

E

[

U2
κc(m)

(

1{
|Uκc(m)|>

√
c(m−2)

4
ǫ
} + 1{

|δκc(m)|>
√

c(m−2)

4
ǫ
}

)]

−−−−→
m→∞ 0. (4)

Likewise, we calculated E[δ2K |FK ] in the proof of Lemma D.4. The application of Lemma D.3
shows that E[δ2

κc(m)|Fκc(m)] is a backward martingale. It follows from Lemma E.4 that

E

[

δ2κc(m)1
{

|Uκc(m)|>
√

c(m−2)

4
ǫ
}

]

= E

[

E[δ2κc(m)|Fκc(m)]1{|Uκc(m)|>
√

c(m−2)

4
ǫ
}

]

−−−−→
m→∞

0. (5)

Finally, applying Lemma E.5, we obtain

E

[

δ2κc(m)1
{

|δκc(m)|>
√

c(m−2)

4
ǫ
}

]

= E

[

A2
κc(m)1

{

|Aκc(m)|>
√

c(m−2)

4
ǫ
}

]

, (6)
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where AK = m−1
K

(nK
2

)−1∑
2≤i2≤mK+1
1≤j1<j2≤nK

X[1,i2;j1,j2]. Using similar arguments as in the proof of

Proposition C.1, it can be shown that AK is a square integrable backward martingale with respect to
the decreasing filtration FA

K = σ(AK ,AK+1, ...). Therefore, Theorem B.2 ensures that there exists

A∞ such that AK
L2−−−−→

K→∞
A∞. This proves that Aκc(m)

L2−−−−→
m→∞

A∞, so applying Lemma E.3 again,

we obtain

E

[

A2
κc(m)1

{

|Aκc(m)|>
√

c(m−2)

4
ǫ
}

]

−−−−→
m→∞

0. (7)

Combining (4), (5), (6) and (7), we deduce that the sufficient condition (3) is satisfied, thus conclud-
ing the proof.

Appendix F: Hewitt-Savage theorem

Proof of Theorem 2.10. This proof adapts the steps taken by Feller (1971) and detailed by Durrett
(2019) to our case. Let A ∈ E∞.

First, let AN = σ
(

(ξi)1≤i≤mN
, (ηj)1≤j≤nN

, (ζij)1≤i≤mN ,1≤j≤nN

)

, the σ-field generated by the
random variables associated with the firstmN rows and nN columns. Notice thatA ∈A :=

⋂∞
n=1AN .

Since A is the limit of AN , then for all ǫ > 0, there exists a N and an associated set AN ∈ AN such
that P(A−A∩AN )< ǫ and P(AN −A∩AN )< ǫ, so that P(A∆AN )< 2ǫ, where ∆ is the symmetric
difference operator, i.e. B∆C = (B −C) ∪ (C −B). Therefore, we can pick a sequence of sets AN

such that P(A∆AN )−→ 0.

Next, we consider the row-column permutation Φ(N) = (σ
(N)
1 , σ

(N)
2 ) ∈ SmN

× SnN
defined by

σ
(N)
1 (i) =











i+mN if 1≤ i≤mN ,

i−mN if mN + 1≤ i≤ 2mN ,

i if 2mN + 1≤ i.

σ
(N)
2 (j) =











j + nN if 1≤ j ≤ nN ,

j − nN if nN +1≤ j ≤ 2nN ,

j if 2nN + 1≤ j.

Since A ∈ E∞, by the definition of E∞, it follows that
{

ω : Φ(N)ω ∈A
}

= {ω : ω ∈A}=A.

Using this, if we denote A′
N :=

{

ω : Φ(N)ω ∈AN

}

, then we can write that

{

ω : Φ(N)ω ∈AN∆A
}

=
{

ω : ω ∈A′
N∆A

}

=A′
N∆A.

Furthermore, the (Ui)1≤i<∞, (Vj)1≤j<∞ and (Lij)1≤i<∞,1≤j<∞ are i.i.d., so

P(AN∆A) = P(ω : ω ∈AN∆A) = P(ω : Φ(N)ω ∈AN∆A).

and we conclude that P(A′
N∆A) = P(AN∆A)−→ 0.
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From this, we derive thatP(AN )−→ P(A) andP(A′
N )−→ P(A). We also remark that P(AN∆A′

N )≤
P(AN∆A) + P(A′

N∆A)−→ 0, so P(AN ∩A′
N )−→ P(A).

But AN and A′
N are independent, so we have P(AN ∩A′

N ) = P(AN )P(A′
N )−→ P(A)2, therefore

P(A) = P(A)2, which means that P(A) = 0 or 1.
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