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Résumé. Les réseaux bipartites sont naturellement représentés par leurs matrices d’adja-cence.
On s’intéresse à des réseaux dont les nœuds sont échangeables, c’est-à-dire que leurs matrices
d’adjacences sont échangeables ligne-colonne. Nos travaux consistent à utiliser des U -statistiques
pour étudier les propriétés topologiques de ces réseaux. En général, les U -statistiques sont les
moyennes d’une fonction d’un sous-ensemble sur tous les sous-ensembles d’une population étudiée.
Dans le cas des matrices échangeables ligne-colonne, les éléments moyennés possèdent une structure
de dépendance complexe. On propose une décomposition à la Hoeffding de ces éléments. On mon-
tre comment on peut l’utiliser pour étudier les propriétés des U -statistiques en tant qu’estimateurs.
Toujours en utilisant cette décomposition, on construit un estimateur consistant de la variance
de ces U -statistiques. Notre objectif est de pouvoir utiliser ces estimateurs dans des problèmes
d’inférence statistique sur des données de réseaux bipartites.

Mots-clés. U -statistiques, échangeabilité, réseaux bipartites, décomposition de Hoeffding, es-
timation de la variance

Abstract. Bipartite networks are naturally represented by their adjacency matrices. We con-
sider node-exchangeable networks, which means their adjacency matrices are row-column exchange-
able. We explore the use of U -statistics to investigate properties of these networks. In general,
U -statistics are the average of a function of a subsample over all the subsamples of a population.
Applied on row-column exchangeable matrices, they become a sum of elements with a complex
dependency structure. We derive a Hoeffding-type decomposition of these elements. We show how
it allows us to study the properties of U -statistics as estimators. A consistent estimator for the
variance of these U -statistics can also be built from this decomposition. Our ultimate goal is to
apply these estimators to statistical inference tasks involving bipartite network data.

Keywords. U -statistics, exchangeability, bipartite networks, Hoeffding decomposition, variance
estimation

1 Introduction

1.1 Dissociated RCE matrices

Networks are used to represent interactions between the entities of a complex system. The entities
are represented by nodes, which are linked by edges when they interact. In bipartite networks,
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there are two types of nodes and interactions only happen between two nodes of different types.
Some examples of bipartite networks connect users and items in recommender systems (Zhou et al.,
2007), papers and scientists in authorship networks (Newman, 2001), or plants and pollinators in
ecological interaction networks (Dormann et al., 2009). In the adjacency matrix Y of a bipartite
network, the two types of nodes are represented by rows and columns, so that Yij encodes the
interaction between entity i of the first type and entity j of the second type. In binary networks,
Yij = 1 if i and j interact, else Yij = 0. Some networks are weighted, meaning Yij can take other
values, giving the intensity of the interaction.

We consider the asymptotic framework where Y is an infinite adjacency matrix and the adjacency
matrix of an observed network of size m × n is the submatrix extracted from the leading m rows
and n columns of Y . Probabilistic models define a joint distribution on the entire network, i.e. the
entries of Y . In random graph models, it is common to assume that the nodes of the networks
are exchangeable. This means that the distribution of the network does not change if its nodes are
permuted. For example, the stochastic blockmodel (Snijders and Nowicki, 1997), the random dot
product graph model (Young and Scheinerman, 2007) or the latent space model (Hoff et al., 2002)
are all three node-exchangeable. On the adjacency matrix of a bipartite network, this assumption
implies row-column exchangeability. Y is said to be row-column exchangeable (RCE) if for any
couple Φ = (σ1, σ2) of finite permutations of N,

ΦY
D
= Y,

where ΦY := (Yσ1(i)σ2(j))i≥1,j≥1. Many exchangeable random graph models also have a dissociated-
ness property, i.e. their adjacency matrices are also dissociated (Silverman, 1976, Lauritzen et al.,
2018). A RCE matrix is said to be dissociated if for all m and n, (Yij)1≤i≤m,1≤j≤n is independent
from (Yij)i>m,j>n. In the present work, we only consider RCE dissociated matrices.

1.2 U-statistics

U -statistics are a generalization of the empirical mean to functions of more than one variable. Given
a sequence of random variables (Y1, Y2, ..., Yn) numbered with a unique index, a U -statistic is defined
as the following average

Uh
n =

(
n

k

)−1 ∑
1≤i1<i2<...<ik≤n

h(Yi1 , Yi2 , ..., Yik), (1)

where h : Rk → R is a symmetric function referred to as the kernel. The case where the (Yi)i≥1

are i.i.d. is well-studied, where the U -statistics are known to be asymptotically normal (Hoeffding,
1948) and can be used for inference tasks such as estimation and hypothesis testing.

A network U -statistic averages a function over submatrices of size p × q. Given an infinite
adjacency matrix Y from which we observe the first m rows and n columns and given a kernel
h : Mp,q(R) → R function of smaller submatrices (1 ≤ p ≤ m, 1 ≤ q ≤ n), its expression is

Uh
m,n(Y ) =

(
m

p

)−1(n
q

)−1 ∑
1≤i1<...<ip≤m
1≤j1<...<jq≤n

h(Y(i1,...,ip;j1,...,jq)),

where Y(i1,...,ip;j1,...,jq) is the submatrix consisting of the rows and columns of Y indexed by i1, ..., ip
and j1, ..., jq, respectively.
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1.3 Contribution

Uh
m,n(Y ) is a sum over elements X{i1,...,ip;j1,...,jq} := h(Y(i1,...,ip;j1,...,jq)) which have a particular de-

pendency structure. The array X verify the following exchangeability property : for any two
permutations σ1 and σ2, we have

(X{i1,...,ip;j1,...,jq}){i1,...,ip}⊂N
{j1,...,jq}⊂N

D
= (X{σ1(i1),...,σ1(ip);σ2(j1),...,σ2(jq)}){i1,...,ip}⊂N

{j1,...,jq}⊂N
. (2)

The results on U -statistics studied in the literature, in particular, for U -statistics of jointly ex-
changeable variables or of separately exchangeable variable (Davezies et al., 2021, Austern and
Orbanz, 2022), are not directly applicable to our case. Le Minh (2021) considered U -statistics of
RCE matrices, but only for kernels of matrices of size 2× 2.

To study the properties of our U -statistics, we find a Hoeffding-type decomposition for Uh
m,n.

We use this decomposition to derive a Central Limit Theorem and a variance estimator.

2 Hoeffding decomposition of subgraph U-statistics

2.1 Aldous-Hoover-Kallenberg (AHK) representation

Corollary 7.23 of Kallenberg (2005) states that for any dissociated RCE matrix Y , there exists ξi, ηj
and ζij arrays of i.i.d. random variables with uniform distribution over [0, 1] and a real measurable
function f such that for all 1 ≤ i, j <∞,

Yij
a.s.
= f(ξi, ηj , ζij). (3)

With such a representation, the kernel function taken on a p× q subgraph can be written

h(Y(i1,...,ip;j1,...,jq)) = hf ((ξi)i∈{i1,...,ip}; (ηj)j∈{j1,...,jq}; (ζij) i∈{i1,...,ip}
j∈{j1,...,jq}

),

where hf = h ◦ f . For any set E, we denote by P(E) the set of all its subsets and Pr(E) the sets
of all its subsets with cardinal r. For i ∈ P(N) and j ∈ P(N), denote

Ai,j := σ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i
j∈j

).

We can then write

E[h(Y(i1,...,ip;j1,...,jq)) | Ai,j] := E[hf (Y(i1,...,ip;j1,...,jq)) | (ξi)i∈i; (ηj)j∈j; (ζij)i∈i
j∈j

].

Now, let 0 ≤ r ≤ p and 0 ≤ c ≤ q. Let i ∈ Pr(JmK) and j ∈ Pc(JnK), where for any positive integer
N , JNK := {1, ..., N}. If i ⊂ {i1, ..., ip} and j ⊂ {j1, ..., jq}, the quantities E[h(Y(i1,...,ip;j1,...,jq)) |
Ai,j] only depend on the elements of i and j and not on the other elements of {i1, ..., ip}\ i and
{j1, ..., jq}\ j. For this reason, we can denote

ψr,c
(i,j)h(Y ) := E[h(Y(i1,...,ip;j1,...,jq)) | Ai,j].
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2.2 Hoeffding projections

In the following, for elements of N2, (x, y) ≤ (x′, y′) means that both x ≤ x′ and y ≤ y′; (x, y) <
(x′, y′) means that, in addition, (x, y) ̸= (x′, y′).

For all i ∈ Pr(JmK) and j ∈ Pc(JnK), we define by recursion the following quantity

pr,c(i,j)h(Y ) = ψr,c
(i,j)h(Y )−

∑
(0,0)≤(r′,c′)<(r,c)

∑
i′∈Pr′ (i)
j′∈Pc′ (j)

pr
′,c′

(i′,j′)h(Y ). (4)

pr,c(i,j)h(Y ) is actually the projection of h(Y(i1,...,ip;j1,...,jq)) on the subspace generated by L2 functions
of all the AHK variables of Ai,j.

Finally, since ψp,q
(i1,...,ip;j1,...,jq)

h(Y ) = h(Y(i1,...,ip;j1,...,jq)), (4) yields the decomposition of the kernel

function h
h(Y(i1,...,ip;j1,...,jq)) =

∑
(0,0)≤(r,c)≤(p,q)

∑
i∈Pr({i1,...,ip})
j∈Pc({j1,...,jq})

pr,c(i,j)h(Y ).

This system of projection satisfies properties similar to these of the Hoeffding decomposition for
the kernel functions of usual U -statistics on i.i.d. data. In particular, the following orthogonality
properties hold.

Proposition 2.1. Let h1 and h2 two kernel functions of respective size p1 × q1 and p2 × q2.

1. Let (0, 0) ≤ (r1, c1) < (p1, q1) and (0, 0) ≤ (r2, c2) < (p2, q2) such that (r1, c1) ̸= (r2, c2). Let
(i1, j1) ∈ Pr1(JmK)× Pc1(JnK) and (i2, j2) ∈ Pr2(JmK)× Pc2(JnK), then

Cov(pr1,c1(i1,j1)
h1(Y ), pr2,c2(i2,j2)

h2(Y )) = 0.

2. Let (r, c) such that (0, 0) ≤ (r, c) < (p1, q1) and (0, 0) ≤ (r, c) < (p2, q2). Let (i1, j1) and (i2, j2)
two elements of Pr(JmK)× Pc(JnK). If (i1, j1) ̸= (i2, j2), then

Cov(pr,c(i1,j1)h1(Y ), pr,c(i2,j2)h2(Y )) = 0.

2.3 Decomposition of U-statistics

Having written Hoeffding-type projections of kernel functions, one can decompose the associated
U -statistics :

Uh
m,n(Y ) =

∑
(0,0)≤(r,c)≤(p,q)

(
p

r

)(
q

c

)
P r,c
m,nh(Y ),

where for all 0 ≤ r ≤ p and 0 ≤ c ≤ q, P r,c
m,nh(Y ) :=

(
m
r

)−1(n
c

)−1∑
i∈Pr(JmK)
j∈Pc(JnK)

pr,c(i,j)h(Y ) are the

U -statistic of kernel functions Y{i,j} → pr,c(i,j)h(Y ) taken on the first m × n row and column of the

matrix Y . Proposition 2.1 ensures that all the P r,c
m,nh(Y ) are orthogonal and degenerate U -statistics.
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3 Central Limit Theorem

For the following sections, we will be investigating the asymptotic properties of Uh
m,n(Y ), we let

the dimensions m and n of the network grow to infinity. Let (mN , nN )N≥1 be a sequence such
that mN

N −−−−→
N→∞

ρ and nN
N −−−−→

N→∞
1 − ρ, where ρ ∈]0, 1[. Denote Uh

N (Y ) := Uh
mN ,nN

(Y ) and

P r,c
N h := P r,c

mN ,nNh. When this is unambiguous, we will simply write Uh
N , P r,c

N h, pr,c(i,j)h and ψr,c
(i,j)h

instead of Uh
N (Y ), P r,c

N h(Y ), pr,c(i,j)h(Y ) and ψr,c
(i,j)h(Y ).

The Hoeffding decomposition of Uh
N can be used to prove a Central Limit Theorem for Uh

N .

Denote Uh
∞ := P 0,0

N h = E[h(Y(1,...,p;1,...,q))] and v
r,c
h := V[ψr,c

(JrK,JcK)h]. We have

√
N(Uh

N − Uh
∞) =

√
N

pP 1,0
N h+ qP 0,1

N h+
∑

(0,0)<(r,c)≤(p,q)
(r,c)̸=(1,0) ̸=(0,1)

(
p

r

)(
q

c

)
P r,c
N h


=

√
Np

mN

mN∑
i=1

p1,0({i},∅)h+

√
Nq

nN

nN∑
j=1

p0,1(∅,{j})h+ oP (1)

=
p

√
ρmN

mN∑
i=1

p1,0({i},∅)h+
q√

(1− ρ)nN

nN∑
j=1

p0,1(∅,{j})h+ oP (1).

The classical Central Limit Theorem for i.i.d. variables applies independently to the two main terms
of this decomposition, so their sum converges to the sum of two independent Gaussian variables

with respective variances p2

ρ v
1,0
h and q2

1−ρv
0,1
h .

Theorem 3.1. Let Y be a dissociated RCE matrix. Let h be a p × q kernel function such that
E[h(Y(1,...,p;1,...,q))2] <∞. Set

V h =
p2

ρ
v1,0h +

q2

1− ρ
v0,1h .

If V h > 0, then √
N(Uh

N − Uh
∞)

D−−−−→
N→∞

N (0, V h).

This theorem can be extended to functions of U -statistics using the delta method (see for
example Chapter 3 of Van der Vaart, 2000).

Corollary 3.2. Let h1, ..., hD be D linearly independent kernel functions such that Theorem 3.1
applies to each. Denote θ = (Uh1

∞ , ..., UhD∞ ). Let g : Rd → R be a differentiable function at θ and ∇g
its gradient. If V δ := ∇g(θ)TΣ∇g(θ) > 0, then

√
N

(
g(Uh1

N , ..., UhD
N )− g(θ)

)
D−−−−→

N→∞
N

(
0, V δ

)
,

where
Σ =

(
Chk,hℓ

)
1≤k,ℓ≤D

,

with Chk,hℓ = limN→+∞NCov(Uhk
N , Uhℓ

N ) for all 1 ≤ k, ℓ ≤ D (and Chk,hk = V hk).
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4 Variance estimator

In the previous section, we have established the asymptotic normality of U -statistics of RCE dissoci-
ated matrices. However, to apply our results to statistical inference tasks, the analytical calculation
of V h is often tedious and depends from the kernel function h. Now, we introduce an estimator
of the variance of Uh

N which is kernel-agnostic. The idea behind our estimator is to exploit the
expression of V h found in Theorem 3.1, based on the Hoeffding projections. It consists in two
variance terms v1,0h = V[ψ1,0

({1},∅)h] and v
0,1
h = V[ψ0,1

(∅,{1})h], which are the variances of specific condi-
tional expectations. We derive estimators for these conditional expectations and we plug them in
an empirical variance estimator. We show that the resulting estimator is consistent.

4.1 Estimators of the conditional expectations

Let µ̂
(i)
N be the average of the kernel function applied on the p × q subgraphs containing the row

i. Symmetrically, let ν̂
(j)
N be the average of the kernel function applied on the p × q subgraphs

containing the column j.

µ̂
(i)
N :=

(
mN − 1

p− 1

)−1(nN
q

)−1 ∑
{i2,...,ip}∈JmN K\{i}

{j1,...,jq}∈JnN K

h(Y(i,i2,...,ip;j1,...,jq)),

ν̂
(j)
N :=

(
mN

p

)−1(nN − 1

q − 1

)−1 ∑
{i1,...,ip}∈JmN K

{j2,...,jq}∈JnN K\{j}

h(Y(i1,...,ip;j,j2,...,jq)).

Proposition 4.1. If Y is a RCE matrix, then :

• E[µ̂(i)N | ξi] = ψ1,0
({i},∅)h and E[ν̂(j)N | ηj ] = ψ0,1

(∅,{j})h,

• µ̂
(i)
N

a.s.,L1−−−−→
N→∞

ψ1,0
({i},∅)h and ν̂

(j)
N

a.s.,L1−−−−→
N→∞

ψ0,1
(∅,{j})h.

As a consequence, µ̂
(i)
N and ν̂

(j)
N are conditionally unbiased and consistent estimators for ψ1,0

({i},∅)h

and ψ0,1
(∅,{j})h.

In particular, the second property is a strong law of large numbers and comes from the fact

that µ̂
(i)
N and ν̂

(j)
N are backward martingales with respect to the decreasing filtrations Fµ(i)

N (Y ) :=

σ((µ̂
(i)
K (Y ))K≥N ) and Fν(j)

N (Y ) := σ((ν̂
(j)
K (Y ))K≥N ).

4.2 Estimator of the variance

Since we have defined estimators for ψ1,0
({i},∅)h and ψ0,1

(∅,{j})h, we can give natural plug-in estimators

for v1,0h = V[ψ1,0
({1},∅)h] and v

0,1
h = V[ψ0,1

(∅,{j})h] :

v̂1,0N =

(
mN

2

)−1 ∑
1≤i1<i2≤mN

(µ̂
(i1)
N − µ̂

(i2)
N )2

2
,
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and

v̂0,1N =

(
nN
2

)−1 ∑
1≤j1<j2≤nN

(ν̂
(j1)
N − ν̂

(j2)
N )2

2
.

Then, an estimator for V h is

V̂N :=
p2

ρ
v̂1,0N +

q2

1− ρ
v̂0,1N .

The following theorem shows that V̂N is a consistent estimator for V h. It follows from the fact
that first, E[v̂1,0N ] = v1,0h + O

(
N−1

)
and E[v̂0,1N ] = v0,1h + O

(
N−1

)
and second, V[v̂1,0N ] = O

(
N−1

)
and V[v̂0,1N ] = O

(
N−1

)
.

Theorem 4.2. We have v̂1,0N
P−−−−→

N→∞
v1,0h and v̂0,1N

P−−−−→
N→∞

v0,1h . As a consequence, V̂N
P−−−−→

N→∞
V h.

With Theorem 4.2, it is possible to use V̂N for statistical inference tasks when plugged-in in
place of V h, an asymptotic normality result similar to Theorem 3.1 holds.

Corollary 4.3. If V > 0, then √
N

V̂N
(Uh

N − Uh
∞)

D−−−−→
N→∞

N (0, 1).

Our approach for building an estimator for V h in the case of a simple U -statistic can be extended
in the case of functions of several U -statistics. One can estimate the elements Chk,hℓ of the covariance
matrix Σ of Corollary 3.2 in a similar way. With the estimators for the conditional expectations

of hk µ̂
hk,(i)
N and ν̂

hk,(j)
N , and of hℓ, µ̂

hℓ,(i)
N ν̂

hℓ,(j)
N . We define the estimator for the covariance term

Chk,hℓ as :

Ĉhk,hℓ
N :=

p2

ρ
ĉhk,hℓ;1,0
N +

q2

1− ρ
ĉhk,hℓ;0,1
N ,

where

ĉhk,hℓ;1,0
N :=

(
mN

2

)−1 ∑
1≤i1<i2≤mN

(µ̂
hk,(i1)
N − µ̂

hk,(i2)
N )(µ̂

hℓ,(i1)
N − µ̂

hℓ,(i2)
N )

2
,

and

ĉhk,hℓ;0,1
N :=

(
nN
2

)−1 ∑
1≤j1<j2≤nN

(ν̂
hk,(j1)
N − ν̂

hk,(j2)
N )(ν̂

hℓ,(j1)
N − ν̂

hℓ,(j2)
N )

2
.

Ĉhk,hℓ
N has analogous properties to V̂ hk

N , which is actually a subcase when hk = hℓ. Therefore,

Σ̂N := (Ĉhk,hℓ
N )1≤k,ℓ≤D is an estimator for Σ of Corollary 3.2. Define

V̂ δ
N := ∇g(Uh1

N , ..., UhD
N )T Σ̂N∇g(Uh1

N , ..., UhD
N ),

an estimator of the asymptotic variance of Corollary 3.2. Since we have Σ̂N −−−−→
N→∞

Σ and g

differentiable at θ, we also have V̂ δ
N −−−−→

N→∞
V δ = ∇g(θ)TΣ∇g(θ) and we can formulate the following

extension to Corollary 4.3.

Corollary 4.4. If V δ > 0, then√
N

V̂ δ
N

(
g(Uh1

N , ..., UhD
N )− g(θ)

)
D−−−−→

N→∞
N (0, 1).
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5 Applications

5.1 RCE dissociated random graph models

A RCE graph model is dissociated if and only if it can be written as a W -graph (Diaconis and
Janson, 2008, Lovàsz and Szegedy, 2010), i.e. it is defined by a distribution W depending on two
parameters in [0, 1] such that for 1 ≤ i, j <∞:

ξi, ηj
i.i.d.∼ U [0, 1]

Yij | ξi, ηj ∼ W(ξi, ηj),

All RCE dissociated graph models are special cases of the W -graph model. More particularly, for
binary graphs, their W -graph formulation can be written

ξi, ηj
i.i.d.∼ U [0, 1]

Yij | ξi, ηj ∼ B(w(ξi, ηj)),

where w : [0, 1]2 → [0, 1] is some function. For example, one can easily see that the latent block
model (a bipartite version of the stochastic block model defined by Govaert and Nadif, 2003)
corresponds to the case where w is block constant. Likewise, the bipartite expected degree dis-
tribution model (Ouadah et al., 2002) corresponds to the case where w is of product form, i.e.
w(ξi, ηj) =

∫
w(ξi, η)dη ×

∫
w(ξ, ηj)dξ.

5.2 Example of kernels : Motif counts

A motif is a small subgraphs with a specific pattern. The motif occurrences in the complete network
can be counted. Motif counts are known to characterize random networks. They are useful statistics
for random graphs as they provide information on the network local structure. Their asymptotic
properties are widely studied and a large numbers of studies use motif counts to perform statistical
tests. Our framework is particularly well adapted to the use of motif counts for statistical tests as
they are closely related to U -statistics with kernel functions of the same size than the motifs. More
precisely, in a network of size mN × nN , if MN is the number of occurrences of a certain motif and
CN is the number of different possible positions for this motif, then the relative frequency MN/CN

can be expressed as a U -statistic.

For example, the motif of Figure 1 has size 2 × 2 and can be counted with the kernel h1 with
expression

h1(Y(i1,i2;j1,j2)) =
1

4

(
Yi1j1Yi1j2Yi2j1(1− Yi2j2) + Yi1j1Yi1j2Yi2j2(1− Yi2j1)

+ Yi1j1Yi2j1Yi2j2(1− Yi1j2) + Yi1j2Yi2j1Yi2j2(1− Yi1j1)

)
.

Its associated U -statistic Uh1
N is equal toMN/CN , whereMN is the number of occurrences of this mo-

tif and CN = 4
(
mN
2

)(
nN
2

)
. The value of the expected relative frequency is Uh1

∞ = E[h1(Y(i1,i2;j1,j2))],
depending from the model. With the variance estimator defined in the previous section, Corol-
lary 4.3 directly applies to Uh1

N , so we have√
N

V̂ h1
N

(Uh1
N − Uh1

∞ ) −−−−→
N→∞

N (0, 1),
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which can be used to build confidence intervals for Uh1
N and perform statistical tests.

Figure 1: Motif counted by Uh1
N .
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